首页 | 官方网站   微博 | 高级检索  
     


Cationic IrIII Emitters with Near-Infrared Emission Beyond 800 nm and Their Use in Light-Emitting Electrochemical Cells
Authors:Guan-Yu Chen  Bo-Ren Chang  Ting-An Shih  Chien-Hsiang Lin  Chieh-Liang Lo  Yan-Zhi Chen  You-Xuan Liu  Yu-Ru Li  Jin-Ting Guo  Chin-Wei Lu  Zu-Po Yang  Hai-Ching Su
Affiliation:1. Department of Applied Chemistry, Providence University, Taichung, 43301 Taiwan;2. Institute of Lighting and Energy Photonics, National Chiao Tung University, Tainan, 71150 Taiwan;3. Institute of Photonic System, National Chiao Tung University, Tainan, 71150 Taiwan
Abstract:Solid-state near-infrared (NIR) light-emitting devices have recently received considerable attention as NIR light sources that can penetrate deep into human tissue and are suitable for bioimaging and labeling. In addition, solid-state NIR light-emitting electrochemical cells (LECs) have shown several promising advantages over NIR organic light-emitting devices (OLEDs). However, among the reported NIR LECs based on ionic transition-metal complexes (iTMCs), there is currently no iridium-based LEC that displays NIR electroluminescence (EL) peaks near to or above 800 nm. In this report we demonstrate a simple method for adjusting the energy gap between the highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) of iridium-based iTMCs to generate NIR emission. We describe a series of novel ionic iridium complexes with very small energy gaps, namely NIR1 – NIR6 , in which 2,3-diphenylbenzog]quinoxaline moieties mainly take charge of the HOMO energy levels and 2,2′-biquinoline, 2-(quinolin-2-yl)quinazoline, and 2,2′-bibenzod]thiazole moieties mainly control the LUMO energy levels. All the complexes exhibited NIR phosphorescence, with emission maxima up to 850 nm, and have been applied as components in LECs, showing a maximum external quantum efficiency (EQE) of 0.05 % in the EL devices. By using a host–guest emissive system, with the iridium complex RED as the host and the complex NIR3 or NIR6 as guest, the highest EQE of the LECs can be further enhanced to above 0.1 %.
Keywords:electrochemistry  iridium  ligand effects  luminescence  nitrogen heterocycles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号