首页 | 官方网站   微博 | 高级检索  
     


Nonlocal buckling and vibration analysis of thick rectangular nanoplates using finite strip method based on refined plate theory
Authors:Saeid Sarrami-Foroushani  Mojtaba Azhari
Abstract:The buckling and vibration of thick rectangular nanoplates is analyzed in this article. A graphene sheet is theoretically assumed and modeled as a nanoplate in this study. The two-variable refined plate theory (RPT) is applied to obtain the differential equations of the nanoplate. The theory accounts for parabolic variation of transverse shear stress through the thickness of the plate without using a shear correction factor. Besides, the analysis is based on the nonlocal theory of elasticity to take the small-scale effects into account. For the first time, the finite strip method (FSM) based on RPT is employed to study the vibration and buckling behavior of nanoplates and graphene sheets. Hamilton’s principle is employed to obtain the differential equations of the nanoplate. The stiffness, stability and mass matrices of the nanoplate are formed using the FSM. The displacement functions of the strips are evaluated using continuous harmonic function series which satisfy the boundary conditions in one direction and a piecewise interpolation polynomial in the other direction. A matrix eigenvalue problem is solved to find the free vibration frequency and buckling load of the nanoplates subjected to different types of in-plane loadings including the uniform and nonuniform uni-axial and biaxial compression. Comparison studies are presented to verify the validity and accuracy of the proposed nonlocal refined finite strip method. Furthermore, a number of examples are presented to investigate the effects of various parameters (e.g., boundary conditions, nonlocal parameter, aspect ratio, type of loading) on the results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号