首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   98篇
  国内免费   9篇
工业技术   623篇
  2024年   2篇
  2023年   34篇
  2022年   66篇
  2021年   126篇
  2020年   84篇
  2019年   59篇
  2018年   26篇
  2017年   37篇
  2016年   20篇
  2015年   12篇
  2014年   29篇
  2013年   29篇
  2012年   30篇
  2011年   18篇
  2010年   13篇
  2009年   10篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有623条查询结果,搜索用时 342 毫秒
1.
Increasing the heat capacity of heat exchangers is a crucial need for modern devices. The thermal conductivity of the usual fluids and the Nusselt (Nu) number of flows containing such fluids are two bottlenecks in the way of increasing heat delivery in the heat exchangers. For this reason, nanofluids have been introduced. The effect of utilizing a Cu-water nanofluid as a coolant of two hot pipes in a square cavity is investigated numerically with a two-component lattice Boltzmann method. The volume fraction of nanoparticles is assumed to be constant (0.03) while the Richardson (Ri) number varies from 0.02 to 20. Results show that the effectiveness of nanoparticles is better observed in the natural convection mode. However, sedimentation is also very probable at high Ri numbers, which significantly reduces the effectiveness of the nanoparticles. Configurations which produce a natural convection stream similar to the forced convection one as well as the configurations with high spacing and hence, low heat stream interactions, are the best choices for a uniform heat rate from the pipes.  相似文献   
2.
The current article focuses on mass and thermal transfer analysis of a two-dimensional immovable combined convective nanofluid flow including motile microorganisms with temperature-dependent viscosity on top of a vertical plate through a porous medium, and a model has been developed to visualize the velocity slip impacts on a nonlinear partial symbiotic flow. The governed equations include all of the above physical conditions, and suitable nondimensional transfigurations are utilized to transfer the governed conservative equations to a nonlinear system of differential equations and obtain numerical solutions by using the Shooting method. Numerical studies have been focusing on the effects of intricate dimensionless parameters, namely, the Casson fluid parameter, Brownian motion parameter, thermophoresis parameter, Peclet number, bioconvection parameter, and Rayleigh number, which have all been studied on various profiles such as momentum, thermal, concentration, and density of microorganisms. The concentration boundary layer thickness and density of microorganisms increased as the Casson fluid parameter, Brownian and thermophoresis parameters increased, whereas the bioconvection parameter, Peclet number, and Rayleigh number increased. The thermal boundary layer thickness, concentration boundary layer thickness, and density of microorganisms all decreased. The velocity distribution decreases as the Peclet number, bioconvection, and thermophoresis parameters rise but rises as the Rayleigh number, Brownian motion parameter, and Casson fluid parameter rise. These are graphed via plots along with divergent fluid parameters.  相似文献   
3.
Abstract

The current research comprises of various machinability aspects of 4340 hardened alloy steel which are scrutinized with in context of improvements in main cutting force, tool flank wear, crater wear, surface roughness, micro-hardness, machined surface morphology, chip morphology, chip reduction coefficient and apparent coefficient of friction under three different cutting fluid applications i.e. compressed air, water soluble coolant and nanofluid (using eco-friendly radiator coolant as the base fluid and Al2O3 as the nanoparticle) using uncoated cermet cutting inserts and a comparative assessment was performed to select which fluid performed better in terms of various machining attributes among three cutting fluids. The minimum quantity lubrication technique (MQL) was used in which a smaller volume of coolant sprinkled at high pressure. This method is found as the most effective alternative to minimize health risks and machining costs, which is quite high in other setups. The test specimen was machined at three different cutting speeds i.e. 100, 120 and 140?m/min along with two machining parameters i.e. feed and depth of cut were kept constant respectively at 0.2?mm/rev and 0.4?mm. Outcomes made a conclusion that Al2O3 enriched ecofriendly nanocoolant outperformed both compressed air and water soluble coolant in terms of every machinability aspects.  相似文献   
4.
The Caputo and Caputo–Fabrizio derivative are applied to study a second‐grade nanofluid over a vertical plate. A comparative analysis is presented to study the unsteady free convection of a second‐grade nanofluid with a new time–space fractional heat conduction. The governing equations with mixed time–space fractional derivatives are non‐dimensionalized and solved numerically, and a comparison between the Caputo and the Caputo–Fabrizio models is made. It is found that the temperature is higher for the Caputo–Fabrizio fractional model than the Caputo model, but the higher velocity only exists near the vertical plate for the Caputo–Fabrizio model than the Caputo model. Moreover, the velocity for the Caputo model will exceed the Caputo–Fabrizio model as y evolves.  相似文献   
5.
Nanofluids have been known as practical materials to ameliorate heat transfer within diverse industrial systems. The current work presents an empirical study on forced convection effects of Al2O3–water nanofluid within an annulus tube. A laminar flow regime has been considered to perform the experiment in high Reynolds number range using several concentrations of nanofluid. Also, the boundary conditions include a constant uniform heat flux applied on the outer shell and an adiabatic condition to the inner tube. Nanofluid particle is visualized with transmission electron microscopy to figure out the nanofluid particles. Additionally, the pressure drop is obtained by measuring the inlet and outlet pressure with respect to the ambient condition. The experimental results showed that adding nanoparticles to the base fluid will increase the heat transfer coefficient (HTC) and average Nusselt number. In addition, by increasing viscosity effects at maximum Reynolds number of 1140 and increasing nanofluid concentration from 1% to 4% (maximum performance at 4%), HTC increases by 18%.  相似文献   
6.
Arc Spray Nanoparticle Synthesis System (ASNSS) has been used to prepare the silver nanofluids in this study. The metal electrodes under the electrical discharge will melt and evaporate rapidly and condense to form the nanoparticles in the dielectric fluid at lower temperature and produce the suspended nanoparticle fluid. Thus, the mechanism of the ASNSS process is superheating the electrodes by plasma to form metallic nuclei and supercooling these nuclei by dielectric liquid to produce nanofluid. This study considers the different controlling parameters such as discharge current,discharge voltage, pulse-duration time, electrode diameter, and the temperature of dielectric liquid. The optimally operated parameters can be obtained to produce the finer particle size in nanofluid. The results indicate the silver electrodes in alcohol fluid will produce the spherical nanosilver particles. The mean particle size of silver in different dielectric liquid temperatures of-40, -20, 0, and 10℃ is about13.4, 15.8, 17.5, and 21.6 nm, respectively. This indicates that the well suspended fluid can be obtained by controlling the lower dielectric fluid temperature.  相似文献   
7.
采用电化学阻抗谱和极化曲线研究了碳钢电极在以模拟冷却水为基液的Al_2O_3纳米流体中的腐蚀行为.实验结果表明,Al_2O_3纳米颗粒对碳钢的腐蚀有一定的抑制作用;Al_2O_3纳米流体中碳钢电极的耐蚀性能随着温度的升高而降低,添加分散剂十二烷基苯磺酸钠(SDBS)对碳钢也有一定的缓蚀作用,当SDBS的用量超过一定值时,对碳钢的缓蚀性能开始下降.  相似文献   
8.
As thermal radiation is one of the fundamental means of heat transfer, therefore, this study analyzes the impacts of thermal radiation and magnetic field on the peristaltic transport of a Jeffrey nanofluid in a nonuniform asymmetric channel. Further, Two models of viscosity are debated: Model (I), in which all parameters dependent on viscosity behave as a constant (as treated before in nanofluid research); Model (II), in which these known parameters are considered to vary with the temperature of the flow. Under the condition of long wavelength and low Reynolds number, the problem is rearranged. The resulting system of partial differential equations (PNE) is solved with aid of Mathematica 11. Furthermore, the streamline graphs are presented by significance of trapping bolus phenomenon. To emphasize the quality of solutions, comparisons between the previous results and recent published results by Reddy et al. have been made and signified. The comparisons are shown in Table 1 and are found to be in good agreement. As the thermal radiation increases, the diameter of nanoparticles rises (thermal radiation is a diminishing function of temperature, and with a decrease in the temperature, the diameter of the nanoparticles increases, that is, the size of nanoparticles increases and they become more active near malignant tumor tissues). Therefore, its work as agents for radiation remedy, produce limited radiation quantities, and selectively target malignant tumor for controlled mutilation (radiotherapy of oncology). Such a model is appropriate for the transportation of physiological flows in the arteries with heat and mass transfer (blood flow models).  相似文献   
9.
Nanofluids, particularly water‐based nanofluids, have been extensively studied as liquid–solid phase change materials (PCMs) for thermal energy storage (TES). In this study, nanofluids with aqueous ethylene glycol (EG) solution as the base fluid are proposed as a novel PCM for cold thermal energy storage. Nanofluids were prepared by dispersing 0.1–0.4 wt% TiO2 nanoparticles into 12, 22, and 34 vol.% EG solutions. The dispersion stability of the nanofluids was evaluated by Turbiscan Lab. The liquid–solid phase change characteristics of the nanofluids were also investigated. Phase change temperature (PCT), nucleation temperature, and half freezing time (HFT) were investigated in freezing experiments. Subcooling degree and HFT reduction were then calculated. Latent heat of solidification was measured using differential scanning calorimetry. Thermal conductivity was determined using the hot disk thermal constant analyzer. Experimental results show that the nanoparticles decreased the PCT of 34 vol.% EG solution but minimally influenced the PCT of 12 and 22 vol.% EG solutions. For all nanofluids, the nanoparticles decreased the subcooling degree, HFT, and latent heat but increased the thermal conductivity of the EG solutions. The mechanism of the improvement of the phase change characteristics and decrease in latent heat by the nanoparticles was discussed. The nanoparticles simultaneously served as nucleating agent that induced crystal nucleation and as impurities that disturbed the growth of water crystals in EG solution‐based nanofluids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
10.
The melting effect with the magnetic field performs a significant role in various manufacturing and industrial applications, such as welding, casting, magma-solidification, nuclear engineering, and so forth. The present study focuses on the impact of the melting effect and magnetic field with inhomogeneous heat origination and sink. The formulation of the mathematical model is done by considering fluid with hybrid nanoparticles and dust particles in two different phases. We have considered Fe2SO4 and Cu as nanoparticles dispersed in the base fluid water along with suspended dust particles. The set of partial differential equations is reduced by using apt similarity variables and boundary conditions to obtain ordinary differential equations. The numerical solution is approximated using MATLAB-bvp4c adopting the shooting technique. The impact of numerous pertinent physical parameters on the velocity and thermal profiles is plotted and deliberated. Furthermore, the rate of heat flow and friction factor is also tabulated and visualized through the graphs. Streamlines are also drawn to know the behavior of the fluid flow. The rise in values of ME quickly increases the velocity of the fluid motion but declines the thermal gradient and thickness of its related boundary layer. Also, inclining values of Pr enhance the thermal profile due to the impact of melting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号