首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   161篇
  国内免费   10篇
生物科学   370篇
  2024年   5篇
  2023年   7篇
  2022年   3篇
  2021年   5篇
  2020年   40篇
  2019年   40篇
  2018年   48篇
  2017年   39篇
  2016年   56篇
  2015年   36篇
  2014年   38篇
  2013年   31篇
  2012年   12篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有370条查询结果,搜索用时 0 毫秒
1.
为了探究氧化石墨烯(GO)对黑麦草种子内生真菌群落结构和多样性的影响,将黑麦草种子在0.4%、0.8%和1.2%水平的GO溶液中胁迫4 d,采用高通量测序技术,分析GO胁迫下黑麦草种子内生真菌群落组成和多样性的变化。结果显示,4个样本所有样品共分离获得303种真菌,归属于10门39纲84目160科240属。在门分类水平上,子囊菌门(Ascomycota)和担子菌门(Basidiomycota)是主要的内生真菌类群;在属分类水平上,各处理的共有优势菌属为链格孢属(Alternaria)。不同GO处理黑麦草种子内生真菌群落结构存在差异,随着GO浓度的增加,子囊菌门的丰度出现下降,0.8%和1.2%GO处理较对照分别显著降低了19%和20%(P<0.05);所有GO处理的担子菌门丰度均显著高于对照(P<0.05);1.2%处理链格孢属的丰度较对照显著降低了37.36%。与对照相比,1.2%GO 处理内生真菌的丰富度和多样性显著增加,ACE、Chao1和Shannon指数分别增加了123.5%、127.4%和117.5%(P<0.05)。主坐标分析(PCoA)分析表明,1.2%GO处理内生真菌群落结构与其他处理有较大差异;线性判别分析(LEfSe)分析发现, 各处理差异指示种明显不同。可见,GO改变了黑麦草种子内生真菌群落的组成和多样性,尤其是高浓度处理(1.2%)。研究可为碳纳米材料暴露对共生物种的潜在影响研究提供参考。  相似文献   
2.
A novel low‐cost nanoporous polytetrafluoroethylene (PTFE)/silica composite separator has been prepared and evaluated for its use in an all‐vanadium redox flow battery (VRB). The separator consists of silica particles enmeshed in a PTFE fibril matrix. It possesses unique nanoporous structures with an average pore size of 38 nm and a porosity of 48%. These pores function as the ion transport channels during redox flow battery operation. This separator provides excellent electrochemical performance in the mixed‐acid VRB system. The VRB using this separator delivers impressive energy efficiency, rate capability, and temperature tolerance. In additon, the flow cell using the novel separator also demonstrates an exceptional capacity retention capability over extended cycling, thus offering excellent stability for long‐term operation. The characteristics of low cost, excellent electrochemical performance and proven chemical stability afford the PTFE/silica nanoporous separator great potential as a substitute for the Nafion membrane used in VRB applications.  相似文献   
3.
Sandwich‐type microporous hybrid carbon nanosheets (MHCN) consisting of graphene and microporous carbon layers are fabricated using graphene oxides as shape‐directing agent and the in‐situ formed poly(benzoxazine‐co‐resol) as carbon precursor. The reaction and condensation can be readily completed within 45 min. The obtained MHCN has a high density of accessible micropores that reside in the porous carbon with controlled thickness (e.g., 17 nm), a high surface area of 1293 m2 g?1 and a narrow pore size distribution of ca. 0.8 nm. These features allow an easy access, a rapid diffusion and a high loading of charged ions, which outperform the diffusion rate in bulk carbon and are highly efficient for an increased double‐layer capacitance. Meanwhile, the uniform graphene percolating in the interconnected MHCN forms the bulk conductive networks and their electrical conductivity can be up to 120 S m?1 at the graphene percolation threshold of 2.0 wt.%. The best‐practice two‐electrode test demonstrates that the MHCN show a gravimetric capacitance of high up to 103 F g?1 and a good energy density of ca. 22.4 Wh kg?1 at a high current density of 5 A g?1. These advanced properties ensure the MHCN a great promise as an electrode material for supercapacitors.  相似文献   
4.
5.
A simple and scalable method to fabricate graphene‐cellulose paper (GCP) membranes is reported; these membranes exhibit great advantages as freestanding and binder‐free electrodes for flexible supercapacitors. The GCP electrode consists of a unique three‐dimensional interwoven structure of graphene nanosheets and cellulose fibers and has excellent mechanical flexibility, good specific capacitance and power performance, and excellent cyclic stability. The electrical conductivity of the GCP membrane shows high stability with a decrease of only 6% after being bent 1000 times. This flexible GCP electrode has a high capacitance per geometric area of 81 mF cm?2, which is equivalent to a gravimetric capacitance of 120 F g?1 of graphene, and retains >99% capacitance over 5000 cycles. Several types of flexible GCP‐based polymer supercapacitors with various architectures are assembled to meet the power‐energy requirements of typical flexible or printable electronics. Under highly flexible conditions, the supercapacitors show a high capacitance per geometric area of 46 mF cm?2 for the complete devices. All the results demonstrate that polymer supercapacitors made using GCP membranes are versatile and may be used for flexible and portable micropower devices.  相似文献   
6.
7.
Li metal, which has a high theoretical specific capacity and low redox potential, is considered to the most promising anode material for next‐generation Li ion‐based batteries. However, it also exhibits a disadvantageous solid electrolyte interphase (SEI) layer problem that needs to be resolved. Herein, an advanced separator composed of reduced graphene oxide fiber attached to aramid paper (rGOF‐A) is introduced. When rGOF‐A is applied, F? anions, generated from the decomposition of the LiPF6 electrolyte during the SEI layer formation process form semi‐ionic C? F bonds along the surface of rGOF. As Li+ ions are plated, the “F‐doped” rGO surface induces the formation of LiF, which is known as a component of a chemically stable SEI, therefore it helps the Li metal anode to operate stably at a high current of 20 mA cm?2 with a high capacity of 20 mAh cm?2. The proposed rGOF‐A separator successfully achieves a stable SEI layer that could resolve the interfacial issues of the Li metal anode.  相似文献   
8.
The pursuit of more efficient carbon‐based anodes for sodium‐ion batteries (SIBs) prepared from facile and economical methods is a very important endeavor. Based on the crystallinity difference within carbon materials, herein, a low‐temperature selective burning method is developed for preparing oxygen and nitrogen codoped holey graphene aerogel as additive‐free anode for SIBs. By selective burning of a mixture of graphene and low‐crystallinity carbon at 450 °C in air, an elastic porous graphene monolith with abundant holes on graphene sheets and optimized crystallinity is obtained. These structural characteristics lead to an additive‐free electrode with fast charge (ions and electrons) transfer and more abundant Na+ storage active sites. Moreover, the heteroatom oxygen/nitrogen doping favors large interlayer distance for rapid Na+ insertion/extraction and provides more active sites for high capacitive contribution. The optimized sample exhibits superior sodium‐ion storage capability, i.e., high specific capacity (446 mAh g?1 at 0.1 A g?1), ultrahigh rate capability (189 mAh g?1 at 10 A g?1), and long cycle life (81.0% capacity retention after 2000 cycles at 5 A g?1). This facile and economic strategy might be extended to fabricating other superior carbon‐based energy storage materials.  相似文献   
9.
Tryptophan is a key amino acid related to metabolomics in gastric cancer. To date, methods were developed only for the assay of l -tryptophan, the role of d -tryptophan being not yet established. Therefore, four stochastic sensors based on different graphene materials modified with β-cyclodextrins, 2,2-diphenyl-1-picrylhydrazyl, and protoporphyrin IX were designed and used for enantioanalysis of tryptophan in whole blood samples. High sensitivities, and reliabilities were recorded when the stochastic sensors were used for the enantioanalysis of tryptophan in whole blood samples. The paper opened a new chapter in early detection of gastric cancer, based on establishing the role of d -tryptophan in metabolomics, and in early diagnosis of gastric cancer.  相似文献   
10.
A facile one‐step hydrothermal co‐deposition method for growth of ultrathin Ni(OH)2‐MnO2 hybrid nanosheet arrays on three dimensional (3D) macroporous nickel foam is presented. Due to the highly hydrophilic and ultrathin nature of hybrid nanosheets, as well as the synergetic effects of Ni(OH)2 and MnO2, the as‐fabricated Ni(OH)2‐MnO2 hybrid electrode exhibits an ultrahigh specific capacitance of 2628 F g?1. Moreover, the asymmetric supercapacitor with the as‐obtained Ni(OH)2‐MnO2 hybrid film as the positive electrode and the reduced graphene oxide as the negative electrode has a high energy density (186 Wh kg?1 at 778 W kg?1), based on the total mass of active materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号