首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
生物科学   20篇
  2019年   1篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1997年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Thiol-rich peptides such as phytochelatins (PCs) and metallothioneins (MTs) are important cellular chelating agents which function in metal detoxification and/or homeostasis. The variations in molecular sizes and lack of chromophores of these peptides make their analysis difficult. This paper reports an electrophoresis-based method for a broad screen of thiol-rich peptides and proteins. The method uses the thiol-selective fluorescent tag, monobromobimane, coupled with Tricine--sodium dodecyl sulphate--urea polyacrylamide gel electrophoresis for a sensitive determination of both PCs and MTs. Results for PCs were confirmed by two-dimensional NMR and HPLC-tandem MS analyses. Sample throughput is substantially improved over chromatography-based methods through parallel sample analysis in 1 h of electrophoretic separation. The method is versatile in that peptides ranging from glutathione to large proteins can be analysed by simple modification(s) of the extraction and electrophoretic conditions, and the nature of the method supports serendipitous detection of unexpected or novel thiol metabolites.  相似文献   
2.
Glutathione S-transferases catalyze the conjugation of glutathione with endogenous and exogenous xenobiotics. Hu and Colman (1995) proposed that there are two distinct substrate sites in rat GST M1-1, a 1-chloro-2,4-dintrobenzene (CDNB) substrate site located in the vicinity of tyrosine-115, and a monobromobimane (mBBr) substrate site. To determine whether the mBBr substrate site is distinguishable from the CDNB substrate site, we tested S-(hydroxyethyl)bimane, a nonreactive derivative of mBBr, for its ability to compete kinetically with the substrates. We find that S-(hydroxyethyl)bimane is a competitive inhibitor (K(I) = 0.36 microM) when mBBr is used as substrate, but not when CDNB is used as substrate, demonstrating that these two sites are distinct. Using site-directed mutagenesis, we have localized the mBBr substrate site to an area midway through alpha-helix 4 (residues 90-114) and have identified residues that are important in the enzymatic reaction. Substitution of alanine at positions along alpha-helix 4 reveals that mutations at positions 103, 104, and 109 exhibit a greater perturbation of the enzymatic reaction with mBBr than with CDNB as substrate. Various other substitutions at positions 103 and 104 reveal that a hydrophobic residue is necessary at each of these positions to maintain optimal affinity of the enzyme for mBBr and preserve the secondary structure of the enzyme. Substitutions at position 109 indicate that this residue is important in the enzyme's affinity for mBBr but has a minimal effect on Vmax. These results demonstrate that the promiscuity of rat GST M1-1 is in part due to at least two distinct substrate sites.  相似文献   
3.

Background

Owing to recent discoveries of many hydrogen sulfide-mediated physiological processes, sulfide biology is in the focus of scientific research. However, the promiscuous chemical properties of sulfide pose complications for biological studies, which led to accumulation of controversial observations in the literature.

Scope of review

We intend to provide an overview of fundamental thermodynamic and kinetic features of sulfide redox- and coordination-chemical reactions and protonation equilibria in relation to its biological functions. In light of these chemical properties we review the strengths and limitations of the most commonly used sulfide detection methods and recently developed fluorescent probes. We also give a personal perspective on blood and tissue sulfide measurements based on proposed biomolecule–sulfide interactions and point out important chemical aspects of handling sulfide reagent solutions.

Major conclusions

The diverse chemistries of sulfide detection methods resulted in orders of magnitude differences in measured physiological sulfide levels. Investigations that were aimed to dissect the underlying molecular reasons responsible for these controversies made the important recognition that there are large sulfide reserves in biological systems. These sulfide pools are tightly regulated in a dynamic manner and they are likely to play a major role in regulation of endogenous-sulfide-mediated biological functions and avoiding toxic side effects.

General significance

Working with sulfide is challenging, because it requires considerable amounts of chemical knowledge to adequately handle reagent sulfide solutions and interpret biological observations. Therefore, we propose that a rigorous chemical approach could aid the reconciliation of the increasing number of controversies in sulfide biology. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   
4.
Mammalian spermatozoa gain their fertilizing ability as they mature in the epididymis, a process which is accompanied by oxidation of sperm protein thiols. Since sperm maturation is dependent upon normal androgenic support to the epididymis, the present work was designed to study the effects of castration on thiol status. Spermatozoa and epididymal fluid were isolated from the epididymides of male rats 5 days after castration or after 11 daily injections of the antiandrogen, cyproterone acetate. Spermatozoa and epididymal fluid were labeled with the fluorescent thiol labeling agent monobromobimane. Intact spermatozoa were evaluated by fluorescence microscopy, protein thiols were analyzed by electrophoresis, and fertilizing ability was examined after insemination of sperm suspension into the uterine horns of immature superovulated female rats. We found that both treatments resulted in an increase in cauda sperm thiols as shown by increased fluorescence in the intact spermatozoa. Protamines and nonbasic proteins were found to have increased levels of reactive thiols. The protein profiles of epididymal fluid from castrated rats were different from those of the controls, and the fluorescence patterns corresponded to the protein profiles. Our results indicate that testosterone withdrawal leads to inhibition of sperm thiol oxidation. Mol. Reprod. Dev. 47:295–301, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
5.
This paper discusses the effects of two neuroleptic agents, chlorpromazine and trifluoperazine; three antimycotics, amphotericin B, ketoconazole and miconazole and four antibiotics, pentamidine, rifampicin, mepacrine and metronidazole on the NADPH-dependent disulfide reducing enzymes cystine reductase (CysR), glutathione reductase (GR) trypanothione reductase (TR) and a putative disulfide reductase for compound X in Acanthamoeba polyphaga from the human pathogens A. polyphaga and Naegleria fowleri. Against A. polyphaga, all nine drugs studied had the capacity to inhibit the putative disulfide reductase from the trophozoites at a concentration of 32microg/ml during a 24h incubation and they were: the neuroleptics trifluoperazine (100%) and chlorpromazine (96%), the antimycotics miconazole (89%) ketoconazole (81%) and amphotericin B, (53%) and the antibiotics pentamidine (89%), rifampicin (64%), mepacrine (57%) and metronidazole (14%). Only six of the nine drugs simultaneously inhibited CysR, GR and the putative disulfide reductase. In N. fowleri, the most potent inhibitors of trypanothione reductase were amphotericin B and miconazole which inhibited 100% at a concentration of 32microg/ml during the 24h incubation followed by the neuroleptics trifluoperazine (92%) and chlorpromazine (80%) and the antibiotic mepacrine (70%). All these also inhibited CysR and GR from the trophozoites other than mepacrine which inhibited only CysR and TR. Ketoconazole, rifampicin (which did not affect CysR), pentamidine and metronidazole had opposite effects since they did not inhibit but increased the amount of the three thiols.  相似文献   
6.
We have studied the mitochondrial permeability transition pore (PTP) under oxidizing conditions with mitochondria-bound hematoporphyrin, which generates reactive oxygen species (mainly singlet oxygen, 1O2) upon UV/visible light-irradiation and promotes the photooxidative modification of vicinal targets. We have characterized the PTP-modulating properties of two major critical sites endowed with different degrees of photosensitivity: (i) the most photovulnerable site comprises critical histidines, whose photomodification by vicinal hematoporphyrin causes a drop in reactivity of matrix-exposed (internal), PTP-regulating cysteines thus stabilizing the pore in a closed conformation; (ii) the most photoresistant site coincides with the binding domains of (external) cysteines sensitive to membrane-impermeant reagents, which are easily unmasked when oxidation of internal cysteines is prevented. Photooxidation of external cysteines promoted by vicinal hematoporphyrin reactivates the PTP after the block caused by histidine photodegradation. Thus, hematoporphyrin-mediated photooxidative stress can either inhibit or activate the mitochondrial permeability transition depending on the site of hematoporphyrin localization and on the nature of the substrate; and selective photomodification of different hematoporphyrin-containing pore domains can be achieved by fine regulation of the sensitizer/light doses. These findings shed new light on PTP modulation by oxidative stress.  相似文献   
7.
Alterations in the redox state of storage proteins and the associated proteolytic processes were investigated in moist-chilled and warm-incubated walnut (Juglans regia L.) kernels prior to germination. The kernel total protein labeling with a thiol-specific fluorochrome i.e. monobromobimane (mBBr) revealed more reduction of 29–32 kDa putative glutelins, while in the soluble proteins, both putative glutelins and 41, 55 and 58 kDa globulins contained reduced disulfide bonds during mobilization. Thus, the in vivo more reduced disulfide bonds of storage proteins corresponds to greater solubility. After the in vitro reduction of walnut kernel proteins pre-treated by N-ethyl maleimide (NEM) with dithioerythrethiol (DTT) and bacterial thioredoxin, the 58 kDa putative globulin and a 6 kDa putative albumin were identified as disulfide proteins. Thioredoxin stimulated the reduction of the H2O2-oxidized 6 kDa polypeptide, but not the 58 kDa polypeptide by DTT. The solubility of 6 kDa putative albumin, 58 and 19–24 kDa putative globulins and glutelins, respectively, were increased by DTT. The in vitro specific mobilization of the 58 kDa polypeptide that occurred at pH 5.0 by the kernel endogenous protease was sensitive to the serine-protease inhibitor phenylmethylsulfonyl fluoride (PMSF) and stimulated by DTT. The specific degradation of the 58 kDa polypeptide might be achieved through thioredoxin-mediated activation of a serine protease and/or reductive unfolding of its 58 kDa polypeptide substrate. As redox changes in storage proteins occurred equally in both moist chilled and warm incubated walnut kernels, the regulatory functions of thioredoxins in promoting seed germination may be due to other germination related processes.  相似文献   
8.
Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.  相似文献   
9.
Rodgoun Attarian 《FEBS letters》2009,583(19):3215-7503
Mycobacterium tuberculosis resides within alveolar macrophages. These phagocytes produce reactive nitrogen and oxygen intermediates to combat the invading pathogens. The macrophage glutathione (GSH) pool reduces nitric oxide (NO) to S-nitrosoglutathione (GSNO). Both glutathione disulfide (GSSG) and GSNO possess mycobactericidal activities in vitro. In this study we demonstrate that M. tuberculosis thioredoxin system, comprises of thioredoxin reductase B2 and thioredoxin C reduces the oxidized form of the intracellular mycothiol (MSSM) and is able to efficiently reduce GSSG and GSNO in vitro. Our study suggests that the thioredoxin system provide a general reduction mechanism to cope with oxidative stress associated with the microbe’s metabolism as well as to detoxify xenobiotics produced by the host.  相似文献   
10.
The thiol redox-sensitive and the total proteome in harvest-ripe grains of closely related genotypes of wheat (Triticum aestivum L.), with either a dormant or a non-dormant phenotype, were investigated using hybrid lines of spring wheat double haploid population segregating transgressively, to gain further insight into seed dormancy controlling events. Redox signalling by reactive oxygen species has been shown to play a role in seed dormancy alleviation. Thiol-disulfide proteins are of particular importance in the context of redox-dependent regulation as a central and flexible mechanism to control metabolic and developmental activities of the cells. Here we describe functional proteomic profiling of reversible oxidoreductive changes and characterize in vivo intrinsic reactivity of cysteine residues using thiol-specific fluorescent labelling, solubility-based protein fractionation, two-dimensional electrophoresis, and mass spectrometry analysis in conjunction with wheat EST sequence libraries. Quantitative differences between genotypes were found for 106 spots containing 64 unique proteins. Forty seven unique proteins displayed distinctive abundance pattern, and among them 31 proteins contained 78 unique redox active cysteines. Seventeen unique proteins with 19 reactive modified cysteines were found to have differential post-translational thiol redox modification. The results provide an insight into the alteration of thiol-redox profiles in proteins that function in major processes in seeds and include groups of redox- and stress-responsive, genetic information processing and cell cycle control, transport and storage proteins, enzymes of carbohydrate metabolism, proteases and their inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号