首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   26篇
  国内免费   24篇
生物科学   700篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   16篇
  2020年   10篇
  2019年   9篇
  2018年   8篇
  2017年   1篇
  2016年   10篇
  2015年   7篇
  2014年   9篇
  2013年   29篇
  2012年   10篇
  2011年   16篇
  2010年   10篇
  2009年   18篇
  2008年   18篇
  2007年   26篇
  2006年   17篇
  2005年   15篇
  2004年   28篇
  2003年   23篇
  2002年   16篇
  2001年   18篇
  2000年   9篇
  1999年   23篇
  1998年   31篇
  1997年   47篇
  1996年   21篇
  1995年   19篇
  1994年   20篇
  1993年   15篇
  1992年   26篇
  1991年   25篇
  1990年   23篇
  1989年   17篇
  1988年   21篇
  1987年   10篇
  1986年   9篇
  1985年   14篇
  1984年   20篇
  1983年   9篇
  1982年   4篇
  1981年   7篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
排序方式: 共有700条查询结果,搜索用时 15 毫秒
1.
Effect of high-intensity endurance training on isokinetic muscle power   总被引:1,自引:0,他引:1  
The purpose of this study was to determine the effects of high-intensity endurance training on isokinetic muscle power. Six male students majoring in physical-education participated in high intensity endurance training on a cycle ergometer at 90% of maximal oxygen uptake (VO2max) for 7 weeks. The duration of the daily exercise session was set so that the energy expenditure equalled 42 kJ.kg-1 of lean body mass. Peak knee extension power was measured at six different speeds (30 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees.s-1) with an isokinetic dynamometer. After training, VO2max increased significantly from mean values of 51.2 ml.kg-1.min-1, SD 6.5 to 56.3 ml.kg-1.min-1, SD 5.3 (P less than 0.05). Isokinetic peak power at the lower test speeds (30 degrees, 60 degrees and 120 degrees.s-1) increased significantly (P less than 0.05). However, no significant differences in muscle peak power were found at the faster velocities of 180 degrees, 240 degrees, and 300 degrees.s-1. The percentage improvement was dependent on the initial muscle peak power of each subject and the training stimulus (intensity of cycle ergometer exercise).  相似文献   
2.
Abstract. Gas exchange measurements were made on single leaves of three C3 and one C4 species at air speeds of 0.4 and 4.0 m s−1 to determine if boundary layer conductance substantially affected the substomatal pressure of carbon dioxide. Boundary layer conductances to water vapour were 0.4 to 0.5 mol m−2 s−1 at the lower air speed, and 1.2 to 1.5 mol m−2 s−1 at the higher air speed. Substomatal carbon dioxide pressures were about 5 Pa lower at low boundary layer conductance in the C3 species, and about 3 Pa lower in the C4 species when measurements were made at high and moderate photosynthetic photon flux densities. No evidence of stomatal adjustment to altered boundary layer conductance was found. Photosynthetic rates at high photon flux densities were reduced by about 20% at the low air speed in the C3 species. The commonly reported values of substomatal carbon dioxide pressure for C3 and C4 species were found to occur only when measurements were made at the higher air speed.  相似文献   
3.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   
4.
The objective of the study was to determine whether nutrient fluxes mediated by hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi between the root zones of grass and legume plants differ with the legume's mode of N nutrition. The plants, nodulating or nonnodulating isolines of soybean [ Glycine max (L.) Merr.], were grown in association with a dwarf maize ( Zea mays L.) cultivar in containers which interposed a 6-cm-wide root-free soil bridge between legume and grass container compartments. The bridge was delimited by screens (44 μm) which permitted the passage of hyphae, but not of roots and minimized non VAM interactions between the plants. All plants were colonized by the VAM fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. The effects of N input to N-sufficient soybean plants through N2-fixation or N-fertilization on associated maize-plant growth and nutrition were compared to those of an N-deficient (nonnodulating, unfertilized) soybean control. Maize, when associated with the N-fertilized soybean, increased 19% in biomass, 67% in N content and 77% in leaf N concentration relative to the maize plants of the N-deficient association. When maize was grown with nodulated soybean, maize N content increased by 22%, biomass did not change, but P content declined by 16%. Spore production by the VAM fungus was greatest in the soils of both plants of the N-fertilized treatment. The patterns of N and P distribution, as well as those of the other essential elements, indicated that association with the N-fertilized soybean plants was more advantageous to maize than was association with the N2-fixing ones.  相似文献   
5.
The relationship between biocontrol activity of Pseudomonas putida strain N1R against Pythium ultimum on pea and soybean seeds and the reduction in ethanol evolution by imbibed seeds was investigated under different treatment conditions, including temperature and numbers of seed‐applied cells of the bacterium. Treatment with strain N1R increased emergence at all temperatures, except for soybean at 12 °C and reduced ethanol concentration in the spermosphere of imbibed seeds at several temperatures. The concentration of bacterial cells in the seed treatment suspension also significantly affected biocontrol efficiency and reduced ethanol production, especially in pea seeds. In contrast, the duration (0–7 h) of submergence of seeds in bacterial suspension had little effect on biocontrol activity of N1R, although submergence of soybean seeds reduced their emergence even in the absence of the pathogen or biocontrol agent. Competition for seed‐derived compounds, including ethanol, is suggested to be one possible mechanism of biocontrol of Pythium by strain N1R, which is not known to produce antifungal antibiotics.  相似文献   
6.
Effect of boundary layer conductance on the response of stomata to humidity   总被引:8,自引:8,他引:0  
Abstract. Leaf conductance responses to leaf to air water vapour partial pressure difference (VPD) have been measured at air speeds of 0.5 and 3.0 ms−1 in single attached leaves of three species in order to test the hypothesis that leaf conductance response to VPD is controlled by evaporation from the outer surface of the epidermis, rather than by evaporation through stomata. Total conductance decreased linearly with increassing VPD at both air speeds, but was decreased 1.6 3.0 times as much as by a given incrase in VPD at high than at low air speed. depending on species. In all species the relationship between leaf conductance and the gradient for evaporation from the epidermis was the same at both values of boundary layer conductance, supporting the hypothesis that direct epidermal evaporation controls stomatal guard cell behaviour in responses of stomata to VPD in these species.  相似文献   
7.
The combined effects of ultraviolet-B (UV-B, 280–320 nm) radiation and water stress were investigated on the water relations of greenhouse grown soybean [ Glycine max (L.) Merr. cv. Essex]. On a weighted (Caldwell 1971), total daily dose basis, plants received either 0 or 3 000 effective J m2 UV-BBE supplied by filtered FS-40 sunlamps. The latter dose simulated the solar UV-B radiation anticipated at College Park, Maryland, U.S.A. (39°N latitude) in the event that the global stratospheric ozone column is reduced by 25%. Plants were either well-watered or preconditioned by drought stress cycles. Diurnal measurements of water potential and stomatal conductance were made on the youngest fully expanded leaf. Various internal water relations parameters were determined for detached leaves. Plants were monitored before, during and after water stress. There were no significant differences in leaf water potential or stomatal conductance between treatments before plants were preconditioned to water stress. However, drought stress resulted in significantly lower midday and afternoon leaf water potentials and lower leaf conductances as compared to well-watered plants. UV-B radiation had no additional effect on leaf water potential; however, UV did result in lower leaf conductances in plants preconditioned to water stress. Turgid weight:dry weight ratio, elastic modulus, bound water and relative water content were unaffected by UV-B radiation. Osmotic potentials at full and zero turgor were significantly lower in the drought stressed treatments as compared to well-watered plants.  相似文献   
8.
Soybean { Glycine max (L.) Merr. ev. Essex} was grown from seed in a greenhouse under ultraviolet-B (UV-B, 280–320 nm) radiation supplied by filtered FS-40 sunlamps. On a weighted, total daily dose basis these plants received either 0 (control) or 2875 effective J m−2 day−1 UV-BBE. When weighted with the generalized plant action spectrum (Caldwell 1971), this simulated the solar ultraviolet-B irradiance expected to occur at College Park, Maryland, USA (39°N) in the event the global stratospheric ozone column is reduced by 23%. The effects of ultraviolet radiation on the photosynthetic recovery from water stress were measured with an infrared gas analyzer. These effects were examined in plants which were either well-watered or previously preconditioned to water stress, during two distinct phenological stages of development. During the early stages of soybean growth, enhanced levels of UV-B reduced net photosynthesis by 25%, and water stress also reduced photosynthesis to nearly the same extent (by 20%). The combination of these two stresses resulted in smaller biomass than that produced by plants exposed to either stress independently. Photosynthesis in older, larger plants was much more sensitive to water stress and was reduced by as much as 50–60% in non-preconditioned plants. Although non-irradiated, non-preconditioned (control) plants recovered to only within 60% of their prestressed value, preconditioned plants recovered to within 70–80% during the 3 day recovery period. Both water stress and UV-B radiation affected non-stomatal conductance, while stomatal conductance was primarily affected by water stress.  相似文献   
9.
It has long been assumed that Al3+ is an important rhizotoxic ion in acid soils around the world, but the toxicity of Al3+ relative to mononuclear hydroxy-Al [AlOH2+ and Al(OH)+2] has been examined in detail only for an Al-sensitive wheat variety ( Triticum aestivum L. cv. Tyler). That plant appears to be sensitive to Al3+ but not to AlOH2+ and Al(OH)+2. New experiments, and reanalyses of previously published experiments, provide evidence that dicotyledonous species may be sensitive to mononuclear hydroxy-Al and that Al3+ may be nontoxic, or less toxic, to those plants. Despite these consistently measured differences between wheat and the dicotyledons, the determination of relative toxicities (Al3+ vs mononuclear hydroxy-Al) may be an intractable problem. Because of hydrolysis equilibria, (AlOH2+) and (Al(OH)+2) are equivalent to (Al3+)k1(H+)−1 and (l3+)k2(H+)−2, respectively, in which k1 and k2 are the first and second hydrolysis constants (braces denote activities). Thus, any expression of root elongation as a function of mononuclear hydroxy-Al can be alternatively expressed as a function of (Al3+) and (H+). Toxicity attributed to mononuclear hydroxy-Al may actually be Al3+ toxicity that increases as pH rises (i.e. Al3+ toxicity ameliorated by H+).  相似文献   
10.
Abstract. The effect of atmospheric humidity on the kinetics of stomatal responses was quantified in gas exchange experiments using sugarcane ( Saccharum spp. hybrid) and soybean ( Glycine max ). Pulses of blue light were used to elicit pulses of stomatal conductance that were mediated by the specific blue light response of guard cells. Kinetic parameters of the conductance response were more closely related to leaf-air vapour pressure difference (VPD) than to relative humidity or transpiration. Increasing VPD significantly accelerated stomatal opening in both sugarcane and soybean, despite an approximately five-fold faster response in sugarcane. In contrast, the kinetics of stomatal recovery (closure) following the pulse were similar in the two species. Acceleration of opening by high VPD was observed even under conditions where soybean exhibited a feedforward response of decreasing transpiration (E) with increasing evaporative demand (VPD). This result suggests that epidermal, rather than bulk leaf, water status mediates the VPD effect on stomatal kinetics. The data are consistent with the hypothesis that increased cpidermal water loss at high VPD decreases the backpressure exerted by neighbouring cells on guard cells. allowing more rapid stomatal opening per unit of guard cell metabolic response to blue light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号