首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   5篇
  国内免费   1篇
生物科学   98篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1986年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有98条查询结果,搜索用时 0 毫秒
1.
Aim The main aim of the present study is to infer the post‐glacial history of Abies species from north‐east Asia and to test the hypotheses that coastal Abies populations suffered less from climatic fluctuations during Pleistocene glacial periods than their more continental counterparts, and that Sakhalin was a major area of introgression. Location Natural ranges of the fir species Abies nephrolepis, Abies sachalinensis and Abies holophylla in the Russian Far East, and of Abies gracilis, which is endemic to the Kamchatka Peninsula. Methods Nineteen populations were sampled for allozyme analysis. Seventeen of these populations were also screened for variation at two paternally inherited chloroplast DNA microsatellite loci (cpSSR) and variation at one maternally inherited mitochondrial marker (nad4‐3/4). Finally a subset of 11 populations was analysed with amplified fragment length polymorphism (AFLP). Comparisons were made with already available Abies sibirica data. For all sets of markers, we estimated genetic diversity and differentiation using an analysis of molecular variance (AMOVA). Population clustering was assessed with a Bayesian approach implemented in structure v.2.3. Results Among the three major species, A. sibirica, A. nephrolepis and A. sachalinensis, A. sachalinensis demonstrated the highest cytoplasmic and nuclear diversity and the most continental species, A. sibirica, the lowest. Both nuclear and mitochondrial DNA markers revealed the presence of a transitional zone on Sakhalin Island between A. nephrolepis and A. sachalinensis of south Sakhalin. The structure analysis delivered very clear results confirming the admixed origin of A. sachalinensis, with a genetic contribution from A. nephrolepis. No variation in cytoplasmic markers was found in A. gracilis, suggesting the occurrence of a recent bottleneck. Main conclusions There is a clear reduction of genetic diversity in Abies species from the Pacific coast into the continent. The higher diversity in A. sachalinensis could have two causes: a larger effective population size in the islands due to relatively stable climatic conditions and consequently less pronounced demographic fluctuations in population size and/or hybridization with continental and Japanese populations. Sakhalin Island is a major transitional zone for conifer species. Finally, the fir from Kamchatka, A. gracilis, should be regarded as a separate species closely related to the A. nephrolepisA. sachalinensis complex.  相似文献   
2.
Being based solely on neontological data, all «unique parent» evolutionary hypotheses, of which «Mitochondrial Eve» is one, fall into the category ofscala naturae. Mathematical treatment of neontological data bases, using cladistic approaches does not confer the status of scientific hypotheses onto such scenarios. Apart from these fundamental problems, such hypotheses are flawed on a number of other bases, including the fact that there is a proportion of parental contribution to mitochondrial lineages, despite widely publicised statements that mithocondrial DNA in mammals is «strictly» maternally inherited. Other weaknesses of «unique mother» hypotheses on that their proponents endeavour to describe the evolution of diploid organisms on the basis of variability in extant haploid organelles, the evolution of which is delinked from that of the diploid organism. A further difficulty is that it is not possible to reconstruct interspecific relationships on the basis of intraspecific variability. There is a general ignorance among proponents of «unique mother» hypotheses regarding the distribution of biological variability on the surface of the globe, a fact which renders the molecular clock inaccurate, and which upsets the simplistic proposal that molecular diversity equates with time. «Unique mother» scenarios are also invalidated by the presence of shared chromosome and other polymorphisms in african great apes and humans at similar percentages in the different lineages, a fact which indicates that these evolving populations did not experience «bottlenecks». These and other difficulties effectively refute the «Mitochondrial Eve» hypothesis, which in any case much resembles creationism of a special kind, in which the offspring of a breeding pair are visualised as belonging to a species different from its parents. Such extreme examples of the punctuational mode of evolution are highly likely to be incorrect.  相似文献   
3.
The extent of genome-wide restructuring predicted in bottleneck models of speciation is addressed in assays of non-reproductive behavior in lines of the housefly. After five serial founder-flush cycles of one of three sizes (1, 4, or 16 pairs), each bottleneck line showed significant differentiation from the outbred control in ambulatory levels and grooming sequences in videotaped records of precopulatory activity. Only one line (4-pair) showed overall lethargy which was associated to inbreeding depression in egg-to-adult viability, thus exemplifying a case of probable extinction due to bottlenecks. The two most hyperactive lines (1- and 16-pair) showed very similar directions of differentiation from the control in locomotor activity and grooming behavior, as well as in mating behavior evaluated from a separate study. This high congruence suggested that directional selection toward the phenotypic optima of the ancestor operated on the bottleneck populations and that a 10-fold difference in theoretical inbreeding coefficients did not affect the magnitude of response. The remaining two bottleneck lines showed some independence from these general trajectories, their divergence along minor axes of ancestral intercorrelation structure possibly being more important to the formation of new species. Significant perturbations of the thresholds for execution of grooming and locomotor movements suggested increased evolutionary potential for ritualization (i.e., sexual selection for adoption of non-reproductive behavior into courtship repertoire) due to bottlenecks.  相似文献   
4.
The success of non-native species may depend on the genetic resources maintained through the invasion process. The Coqui ( Eleutherodactylus coqui ), a frog endemic to Puerto Rico, was introduced to Hawaii in the late 1980s via the horticulture trade, and has become an aggressive invader. To explore whether genetic diversity and population structure changed with the introduction, we assessed individuals from 15 populations across the Hawaiian Islands and 13 populations across Puerto Rico using six to nine polymorphic microsatellite loci and five dorsolateral colour patterns. Allelic richness ( R T) and gene diversity were significantly higher in Puerto Rico than in Hawaii populations. Hawaii also had fewer colour patterns (two versus three to five per population) than Puerto Rico. We found no isolation by distance in the introduced range, even though it exists in the native range. Results suggest extensive mixing among frog populations across Hawaii, and that their spread has been facilitated by humans. Like previous research, our results suggest that Hawaiian Coquis were founded by individuals from sites around San Juan, but unlike previous research the colour pattern and molecular genetic data (nuclear and mtDNA) support two separate introductions, one on the island of Hawaii and one on Maui. Coquis are successful invaders in Hawaii despite the loss of genetic variation. Future introductions may increase genetic variation and potentially its range.  相似文献   
5.
Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. ‘Genetic rescue’ techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of ‘genetic rescue’ using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.  相似文献   
6.
Selection for increased morphometric shape (ratio of wing length to thorax width) was compared between control (nonbottlenecked) populations and bottlenecked populations founded with two male–female pairs of flies. Contrary to neutral expectation, selectional response was not reduced in bottlenecked populations, and the mean realized heritabilities and additive genetic variances were higher for the bottlenecked lines than for the nonbottlenecked lines. Additive genetic variances based on these realized heritabilities were consistent with independent estimates of genetic variances based on parent–offspring covariances. Joint scaling tests applied to the crosses between selected lines and their controls revealed significant nonadditive components of genetic variance in the ancestor, which were not detected in the crosses involving bottlenecked lines. The nonbottlenecked lines responded principally by changes in one trait or the other (wing length or thorax width) but not in both, and regardless of which trait responded, larger trait size was dominant and epistatic to smaller size. Stabilizing selection for morphometric shape in the ancestor likely molded the genetic architecture to include nonadditive genetic effects.  相似文献   
7.
In the newly emerging field of statistical phylogeography, consideration of the stochastic nature of genetic processes and explicit reference to theoretical expectations under various models has dramatically transformed how historical processes are studied. Rather than being restricted to ad hoc explanations for observed patterns of genetic variation, assessments about the underlying evolutionary processes are now based on statistical tests of various hypotheses, as well as estimates of the parameters specified by the models. A wide range of demographical and biogeographical processes can be accommodated by these new analytical approaches, providing biologically more realistic models. Because of these advances, statistical phylogeography can provide unprecedented insights about a species' history, including decisive information about the factors that shape patterns of genetic variation, species distributions, and speciation. However, to improve our understanding of such processes, a critical examination and appreciation of the inherent difficulties of historical inference and challenges specific to testing phylogeographical hypotheses are essential. As the field of statistical phylogeography continues to take shape many difficulties have been resolved. Nonetheless, careful attention to the complexities of testing historical hypotheses and further theoretical developments are essential to improving the accuracy of our conclusions about a species' history.  相似文献   
8.
White-tailed deer (Odocoileus virginianus) were nearly extirpated from the southeastern USA during the late 19th and early 20th centuries. Recovery programmes, including protection of remnant native stocks and transplants from other parts of the species' range, were initiated in the early 1900's. The recovery programmes were highly successful and deer are presently numerous and continuously distributed throughout the southeastern USA. However, the impact of the recovery programmes on the present genetic structure of white-tailed deer remains to be thoroughly investigated. We used 17 microsatellite DNA loci to assess genetic differentiation and diversity for 543 white-tailed deer representing 16 populations in Mississippi and three extra-state reference populations. There was significant genetic differentiation among all populations and the majority of genetic variation (> or = 93%) was contained within populations. Patterns of genetic structure, genetic similarity and isolation by distance within Mississippi were not concordant with geographical proximity of populations or subspecies delineations. We detected evidence of past genetic bottlenecks in nine of the 19 populations examined. However, despite experiencing genetic bottlenecks or founder events, allelic diversity and heterozygosity were uniformly high in all populations. These exceeded reported values for other cervid species that experienced similar population declines within the past century. The recovery programme was successful in that deer were restored to their former range while maintaining high and uniform genetic variability. Our results seem to confirm the importance of rapid population expansion and habitat continuity in retaining genetic variation in restored populations. However, the use of diverse transplant stocks and the varied demographic histories of populations resulted in fine-scale genetic structuring.  相似文献   
9.
Evolutionary genetics of self-incompatibility in the Solanaceae   总被引:2,自引:0,他引:2  
The self-incompatibility (S) gene in flowering plants has long been appreciated as an example of extreme allelic polymorphism maintained by frequency-dependent selection. Recent studies of population samples of S-allele sequences obtained by RT-PCR from five species of Solanaceae now reveal a picture of conspicuous inter-specific variation in both S-allele number and age. Explanations for this variation are examined with reference to current theory. We propose that changes in species' effective population size, particularly those associated with the evolution of different life histories, best account for interspecific differences in both the number and average age of S alleles.  相似文献   
10.
Habitat loss and fragmentation are the leading causes of species’ declines and extinctions. A key component of studying population response to habitat alteration is to understand how fragmentation affects population connectivity in disturbed landscapes. We used landscape genetic analyses to determine how habitat fragmentation due to timber harvest affects genetic population connectivity of the coastal tailed frog (Ascaphus truei), a forest-dwelling, stream-breeding amphibian. We compared rates of gene flow across old-growth (Olympic National Park) and logged landscapes (Olympic National Forest) and used spatial autoregression to estimate the effect of landscape variables on genetic structure. We detected higher overall genetic connectivity across the managed forest, although this was likely a historical signature of continuous forest before timber harvest began. Gene flow also occurred terrestrially, as connectivity was high across unconnected river basins. Autoregressive models demonstrated that closed forest and low solar radiation were correlated with increased gene flow. In addition, there was evidence for a temporal lag in the correlation of decreased gene flow with harvest, suggesting that the full genetic impact may not appear for several generations. Furthermore, we detected genetic evidence of population bottlenecks across the Olympic National Forest, including at sites that were within old-growth forest but surrounded by harvested patches. Collectively, this research suggests that absence of forest (whether due to natural or anthropogenic changes) is a key restrictor of genetic connectivity and that intact forested patches in the surrounding environment are necessary for continued gene flow and population connectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号