首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   2篇
  国内免费   1篇
生物科学   96篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   12篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   17篇
  2013年   11篇
  2012年   7篇
  2011年   6篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2001年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
In the present study, we used microRNA (miRNA) sequencing to discover and explore the expression profiles of known and novel miRNAs in 1000 ng/ml LPS stimulated for 8 h vis-à-vis non-stimulated (i.e. control) PBMCs isolated from the blood of healthy pigs. A total of 291 known miRNAs were bio-computationally identified in porcine PBMCs, and 228 novel miRNAs (not enlisted in the swine mirBase) were identified. Among these miRNAs, ssc-miR-148a-3p, ssc-let-7g, ssc-let-7f, 3_8760, ssc-miR-26a, ssc-miR-451, ssc-miR-21, ssc-miR-30d, ssc-miR-99a and ssc-miR-103 were the top 10 most abundant miRNAs in porcine PBMCs. Through miRNA differential analysis combined with quantitative PCR, we found the expressions of ssc-miR-122, ssc-miR-129b, ssc-miR-17-5p and ssc-miR-152 were significantly changed in porcine PBMCs after LPS stimulation. Furthermore, targets prediction and function analysis indicated a significant enrichment in gene ontology functional categories related to diseases, immunity and inflammation. In conclusion, this study on profiling of miRNAs expressed in LPS-stimulated PBMCs provides an important reference point for future studies on regulatory roles of miRNAs in porcine immune system.  相似文献   
2.
BackgroundBiogenic nanoparticles are gaining attention due to their low toxicity and numerous biomedical applications. Present study aimed to compare the potential anticancer activity of two biogenic silver nanoparticles (bAgNPs and pAgNPs) against human cervical cancer cell lines (HeLa).MethodsbAgNPs were synthesized using Acinetobacter sp. whereas pAgNPs were synthesized using aqueous root extract of Curcuma aromatica. Effect of these nanoparticles on HeLa cells viability was studied using MTT assay and colony formation assay. Anticancer potential was determined using fluorescence microscopy and flow cytometry studies. Bio-compatibility studies were performed against peripheral blood mononuclear cells (PBMCs).ResultsBoth the nanoparticles showed 50 % viability of peripheral blood mononuclear cells (PBMCs) when used at high concentration (200 μg/mL). IC50 for bAgNPs and pAgNPs against HeLa cells were 17.4 and 14 μg/mL respectively. Colony formation ability of Hela cells was reduced on treatment with both nanoparticles. Acridine orange and ethidium bromide staining demonstrated that bAgNPs were cytostatic whereas pAgNPs were apoptotic. JC-1 dye staining revealed that the mitochondrial membrane potential was affected on treatment with pAgNPs while it remained unchanged on bAgNPs treatment. Flow cytometry confirmed cell cycle arrest in HeLa cells on treatment with nanoparticles further leading to apoptosis in case of pAgNPs. About 77 and 58 % HeLa cells were found in subG1 phase on treatment with bAgNPs and pAgNPs respectively. bAgNPs showed cytostatic effect on HeLa cells arresting the cell growth in subG1 phase, whereas, pAgNPs triggered death of HeLa cells through mitochondrial membrane potential impairment and apoptosis.ConclusionOverall, bAgNPs and pAgNPs could be safe and showed potential to be used as anticancer nano-antibiotics against human cervical cancer cells.  相似文献   
3.
Inflammatory mediator prostaglandin E2 (PGE2) contributes to bone resorption in several inflammatory conditions including periodontitis. The terminal enzyme, microsomal prostaglandin E synthase‐1 (mPGES‐1) regulating PGE2 synthesis is a promising therapeutic target to reduce inflammatory bone loss. The aim of this study was to investigate effects of mPGES‐1 inhibitors, aminothiazoles TH‐848 and TH‐644, on PGE2 production and osteoclastogenesis in co‐cultures of periodontal ligament (PDL) and osteoclast progenitor cells RAW 264.7, stimulated by lipopolysaccharide (LPS), and bone resorption in RANKL‐mediated peripheral blood mononuclear cells (PBMCs). PDL and RAW 264.7 cells were cultured separately or co‐cultured and treated with LPS alone or in combination with aminothiazoles. Multinucleated cells stained positively for tartrate‐resistant acid phosphatase (TRAP) were scored as osteoclast‐like cells. Levels of PGE2, osteoprotegerin (OPG) and interleukin‐6, as well as mRNA expression of mPGES‐1, OPG and RANKL were analysed in PDL cells. PBMCs were treated with RANKL alone or in combination with aminothiazoles. TRAP‐positive multinucleated cells were analysed and bone resorption was measured by the CTX‐I assay. Aminothiazoles reduced LPS‐stimulated osteoclast‐like cell formation both in co‐cultures and in RAW 264.7 cells. Additionally, aminothiazoles inhibited PGE2 production in LPS‐stimulated cultures, but did not affect LPS‐induced mPGES‐1, OPG or RANKL mRNA expression in PDL cells. In PBMCs, inhibitors decreased both osteoclast differentiation and bone resorption. In conclusion, aminothiazoles reduced the formation of osteoclast‐like cells and decreased the production of PGE2 in co‐cultures as well as single‐cell cultures. Furthermore, these compounds inhibited RANKL‐induced bone resorption and differentiation of PBMCs, suggesting these inhibitors for future treatment of inflammatory bone loss such as periodontitis.  相似文献   
4.
Pravastatin sodium on triggering receptor expressed on myeloid cell-1 (TREM-1)-mediated inflammation in human peripheral blood mononuclear cells (PBMCs) has been poorly investigated. In this study, we isolated PBMCs from the peripheral blood samples of patients with chronic obstructive pulmonary disease, treated the cells with pravastatin sodium, and determined a concentration at which more than 90% cells could survive. Then we treated cells with 10?ng/ml of lipopolysaccharide, added with 10, 50, 100?μM of pravastatin sodium combined with or without LR-12, a known TREM-1 inhibitor. The expression of TREM-1 was determined by quantitative RT-PCR. The levels of TREM-1, IL-6, and TNF-α in cell culture supernatant were measured with ELISA. Simultaneously, NF-κB signaling pathway-related protein p-p65 and p-IκBα were detected by Western blot assay. Results demonstrated that pravastatin sodium significantly mitigated lipopolysaccharide-stimulated TREM-1 over-expression at mRNA and protein levels dose-dependently. Elevated IL-6 and TNF-α levels changed synchronously. LR-12 inhibited the TREM-1 over-expression and inflammatory factor production but did not show extra synergistic effect to pravastatin. Lipopolysaccharide induced phospho-p65 and -IκBα over-expression was weakened significantly when cells were treated with pravastatin sodium. In conclusion, pravastatin could inhibit TREM-1-medieted inflammation and NF-κB signaling pathway was involved.  相似文献   
5.
The chemokine receptor CXCR2 and its ligands are implicated in the progression of tumours and various inflammatory diseases. Activation of the CXCLs/CXCR2 axis activates multiple signalling pathways, including the PI3K, p38/ERK, and JAK pathways, and regulates cell survival and migration. The CXCLs/CXCR2 axis plays a vital role in the tumour microenvironment and in recruiting neutrophils to inflammatory sites. Extensive infiltration of neutrophils during chronic inflammation is one of the most important pathogenic factors in various inflammatory diseases. Chronic inflammation is considered to be closely correlated with initiation of cancer. In addition, immunosuppressive effects of myeloid-derived suppressor cells (MDSCs) against T cells attenuate the anti-tumour effects of T cells and promote tumour invasion and metastasis. Over the last several decades, many therapeutic strategies targeting CXCR2 have shown promising results and entered clinical trials. In this review, we focus on the features and functions of the CXCLs/CXCR2 axis and highlight its role in cancer and inflammatory diseases. We also discuss its potential use in targeted therapies.  相似文献   
6.
Human Vg9/Vδ2 T cells (γδ T cells) are immune surveillance cells both in innate and adaptive immunity and are a possible target for anticancer therapies, which can induce immune responses in a variety of cancers. Small non-peptide antigens such as zoledronate can do activation and expansion of T cells in vitro. It is evident that for adoptive cancer therapies, large numbers of functional cells are needed into cancer patients. Hence, optimization of methods needs to be carried out for the efficient expansion of these T cells. Standardization of peripheral blood mononuclear cells (PBMCs) isolation was devised. Cytokines (interleukin 2 (IL-2) and interleukin 15 (IL-15)) and zoledronate were also standardized for different concentrations. It was found that an increased number of PBMCs were recovered when washing was done at 1100 revolution per minute (rpm). Significantly high expansion fold was (2524 ± 787 expansion fold) achieved when stimulation of PBMCs was done with 1 µM of zoledronate and both cytokines IL-2 and IL-15 supported the expansion and survival of cells at the concentrations of 100 IU/ml and 10 ng/ml respectively. 14-day cultures showed highly pure (91.6 ± 5.1%) and live (96.5 ± 2.5%) expanded γδ T cells. This study aimed to standardize an easy to manipulate technique for the expansion of γδ T cells, giving a higher yield.  相似文献   
7.
8.
Ovine β2 subunit of the interleukin (IL)-12 receptor (IL-12Rβ2) was cloned from mRNA preparation of mitogen-activated peripheral blood mononuclear cells (PBMCs). The complete coding sequence for ovine IL-12 Rβ2 was found to be 2586 nucleotides in length encoding 862-amino-acid residue protein. It showed 96.4% homology at the nucleotide level and 94.1% homology at the amino acid level with bovine IL-12 Rβ2. The ovine IL-12 Rβ2 subunit shares common structural and functional elements with their counterparts from the other species. Phylogenetic tree showed that ovine IL-12Rβ2 was clustered into the Artiodactyla group, together with those of cattle and pig, which was distinct from the other groups. Real-time RT-PCR was used to investigate expression of the IL-12Rβ2 in different tissues of sheep in order to determine the characterization of this receptor in tissue. Expression analysis showed that IL-12Rβ2 mRNA expression was detected at all the detected tissues with the exception of thymus.  相似文献   
9.
H Ge  G Wang  L Zhang  S Wang  Z Zou  S Yan  Y Wang  Z Zhang 《Gene》2012,506(2):417-422
Interleukin receptor-associated kinase (IRAK)-1 binding protein 1 (IRAK1BP1) is a critical factor in preventing dangerous overproduction of proinflammatory cytokines by the innate immune system and in influencing the specificity of TLR responses. In this study, a first molluscan IRAK1BP1 gene, saIRAK1BP1, was cloned from the small abalone (Haliotis diversicolor). Its full-length cDNA sequence is 1047bp, with a 747bp open reading frame encoding a protein of 249 aa. The molecular mass of the deduced protein is approximately 28.1kDa with an estimated pI of 8.87, and shows highest identity (52%) to acorn worm Saccoglossus kowalevskii. Amino acid sequence analysis revealed that saIRAK1BP1 shares a conserved SIMPL domain. Quantitative real-time PCR was employed to investigate the tissue distribution of saIRAK1BP1 mRNA, and its expression in abalone under bacteria challenge and larvae at different developmental stages. The saIRAK1BP1 mRNA could be detected in all examined tissues, with the highest expression level in hemocytes, and was up-regulated in gills, kidneys and hemocytes after bacteria injection. Additionally, saIRAK1BP1 was constitutively expressed at all examined developmental stages. These results indicate that saIRAK1BP1 play an important role in the adult abalone immune system and might be essential in embryo and larval development in abalone.  相似文献   
10.
In recent years, the rapid analysis of single cells has commonly been performed using flow cytometry and fluorescently-labeled antibodies. However, the issue of spectral overlap of fluorophore emissions has limited the number of simultaneous probes. In contrast, the new CyTOF mass cytometer by DVS Sciences couples a liquid single-cell introduction system to an ICP-MS.1 Rather than fluorophores, chelating polymers containing highly-enriched metal isotopes are coupled to antibodies or other specific probes.2-5 Because of the metal purity and mass resolution of the mass cytometer, there is no "spectral overlap" from neighboring isotopes, and therefore no need for compensation matrices. Additionally, due to the use of lanthanide metals, there is no biological background and therefore no equivalent of autofluorescence. With a mass window spanning atomic mass 103-203, theoretically up to 100 labels could be distinguished simultaneously. Currently, more than 35 channels are available using the chelating reagents available from DVS Sciences, allowing unprecedented dissection of the immunological profile of samples.6-7Disadvantages to mass cytometry include the strict requirement for a separate metal isotope per probe (no equivalent of forward or side scatter), and the fact that it is a destructive technique (no possibility of sorting recovery). The current configuration of the mass cytometer also has a cell transmission rate of only ~25%, thus requiring a higher input number of cells.Optimal daily performance of the mass cytometer requires several steps. The basic goal of the optimization is to maximize the measured signal intensity of the desired metal isotopes (M) while minimizing the formation of oxides (M+16) that will decrease the M signal intensity and interfere with any desired signal at M+16. The first step is to warm up the machine so a hot, stable ICP plasma has been established. Second, the settings for current and make-up gas flow rate must be optimized on a daily basis. During sample collection, the maximum cell event rate is limited by detector efficiency and processing speed to 1000 cells/sec. However, depending on the sample quality, a slower cell event rate (300-500 cells/sec) is usually desirable to allow better resolution between cells events and thus maximize intact singlets over doublets and debris. Finally, adequate cleaning of the machine at the end of the day helps minimize background signal due to free metal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号