首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   7篇
  国内免费   3篇
生物科学   40篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
2.
在河北省赤城县大海坨国家自然保护区内,从2002年到2004年应用生命表方法研究了在同一网络斑块中共存的金堇蛱蝶Euphydryas aurinia和大网蛱蝶Melitaea phoebe两个世代的幼期各阶段的死亡情况,目的是了解影响种群动态的重要因子,为它们的长期保育提供信息。结果表明,金堇蛱蝶幼期总累积死亡率都较小,两个世代分别为59%和72%; 而大网蛱蝶总累积死亡率较高,两个世代分别为89%和80%。影响大网蛱蝶死亡的最重要因子是放牧,两个世代与放牧相关的k值分别为0.559和0.167;尤其是在越冬后大网蛱蝶幼虫组聚集取食阶段,导致两个世代分别有50%和25%的幼虫组死亡。寄生蜂在大网蛱蝶小种群下也分别使两个世代4%和9%的5~6龄期幼虫以及13%和24%的蛹死亡。金堇蛱蝶死亡主要发生在越冬期,与越冬死亡相关的k值两个世代分别为0.073和0.199, 而寄主植物的质量影响越冬期幼虫组死亡; 寄生蜂则对金堇蛱蝶种群的调控作用极小,只有在2003~2004世代有4.0% 的越冬后幼虫被寄生和7%的蛹被寄生。影响两种蛱蝶种群动态的关键因子不同,采取的保护措施应有所不同。在春季减少源斑块内的放牧,对于以源-汇集合种群形式存在的大网蛱蝶种群恢复和增长十分必要; 而对以经典集合种群形式存在的金堇蛱蝶, 通过适当植被管理提高繁殖区域内寄主植物质量,可以提高越冬期幼虫组存活率,有利于其长期持续生存。  相似文献   
3.
4.
Many hypotheses have been proposed to explain multiple mating in females. One of them is bet hedging, that is avoiding having no or very few offspring in any given generation, rather than maximizing the expected number of offspring. However, within-generation bet hedging is generally believed to be an unimportant evolutionary force, except in very small populations. In this study, we derive predictions of the bet-hedging hypothesis for a case in which local insect populations are often small, offspring performance varies, for example, due to inbreeding depression, and the groups of gregarious larvae have to exceed a threshold size before they are likely to survive throughout the larval stage. These conditions exist for populations of the Glanville fritillary butterfly (Melitaea cinxia), potentially making bet-hedging benefits larger than usual. We observed matings in a field cage, which allowed detailed observations under practically natural conditions, and analyzed genetic paternity of egg clutches laid by females under direct observation. The egg-laying and survival patterns are in line with the predictions, supporting the hypothesis that multiple mating in M. cinxia presents a rare case of within-generation bet hedging.  相似文献   
5.
The population genetic structure of the butterfly Melitaea didyma was studied along the northern distribution range border in Central Germany by means of allozyme electrophoresis. Individuals were sampled from a total of 21 habitat patches from four regions, and two provinces. Sampling was designed to estimate local vs. regional differentiation. High levels of variability were found, H e= 0.14–0.21. The mean expected sample heterozygosity from one region, Mosel, was significantly lower than from the Hammelburg region, H e= 0.17 and 0.19, respectively. Two hierarchical levels of genetic differentiation were found. Within regions individuals sampled from different patches behaved as belonging to one population with high levels of gene flow (Hammelburg F ST= 0.015, Mosel F ST= 0.044), though local isolation barriers did create a substructuring of these populations. The inbreeding coefficients, F IS, were constant over all sample levels, suggesting a similar distribution of habitat patches within regions. Between regions gene flow was limited. An isolation by distance analysis indicated that the hierarchical structure, at the provincial level, may be breaking down due to isolation of regional populations. A more general observation was that the sampling design may greatly have influenced the estimation of genetic differentiation. Depending on which samples were included, overall F ST estimates ranged from 0.059–0.090.  相似文献   
6.
Habitat fragmentation and climate change are both prominent manifestations of global change, but there is little knowledge on the specific mechanisms of how climate change may modify the effects of habitat fragmentation, for example, by altering dynamics of spatially structured populations. The long‐term viability of metapopulations is dependent on independent dynamics of local populations, because it mitigates fluctuations in the size of the metapopulation as a whole. Metapopulation viability will be compromised if climate change increases spatial synchrony in weather conditions associated with population growth rates. We studied a recently reported increase in metapopulation synchrony of the Glanville fritillary butterfly (Melitaea cinxia) in the Finnish archipelago, to see if it could be explained by an increase in synchrony of weather conditions. For this, we used 23 years of butterfly survey data together with monthly weather records for the same period. We first examined the associations between population growth rates within different regions of the metapopulation and weather conditions during different life‐history stages of the butterfly. We then examined the association between the trends in the synchrony of the weather conditions and the synchrony of the butterfly metapopulation dynamics. We found that precipitation from spring to late summer are associated with the M. cinxia per capita growth rate, with early summer conditions being most important. We further found that the increase in metapopulation synchrony is paralleled by an increase in the synchrony of weather conditions. Alternative explanations for spatial synchrony, such as increased dispersal or trophic interactions with a specialist parasitoid, did not show paralleled trends and are not supported. The climate driven increase in M. cinxia metapopulation synchrony suggests that climate change can increase extinction risk of spatially structured populations living in fragmented landscapes by altering their dynamics.  相似文献   
7.
Many studies aim at testing the impact of recent fragmentation on the genetic diversity and connectivity of populations, while some species do exist naturally in fragmented landscapes because of their habitat requirements. Therefore, it is important to look at the genetic signatures of species occurring in naturally fragmented landscapes in order to disentangle the effect of fragmentation from the effect of habitat requirements. We selected two Nymphalid butterflies for this purpose. While Melanargia galathea is a common butterfly in flower-rich meadows, Melitaea aurelia is closely connected to calcareous grasslands, thus being historically fragmented due to its ecological demands. For the analysis of the genetic response on these opposed patterns, we analysed 18 allozyme loci for 789 individuals (399 individuals of M. galathea and 390 individuals of M. aurelia) in a western German study region with adjacent areas in Luxemburg and northeastern France. Both species showed similarly low genetic differentiations among local populations (M. galathea: F ST 3.3%; M. aurelia: F ST 3.6%), both combined with a moderate level of inbreeding. Isolation-by-distance analysis revealed a significant correlation for both species with similar amounts of explained variances (M. galathea: r 2 = 27.8%; M. aurelia: r 2 = 28.5%). Most parameters of genetic diversity were higher in M. galathea than in M. aurelia, but the latter species had a considerably higher amount of rare or locally restricted genes; the differing ecological demands are thus reflected in these differences. Both species thus seem to be genetically well suited to their respective ecological requirements. In the light of conservation genetics, we deduce that highly fragmented populations are not necessarily prone to extinction. The extinction risk might be linked to the life history of an organism and its population genetic structure.  相似文献   
8.
The Glanville fritillary butterfly offers unique opportunities for population genetic studies in a metapopulation. Here I report the characterization of five polymorphic loci in Melitaea cinxia. I found high levels of polymorphism, with allele numbers ranging from nine to 43, and very broad size ranges.  相似文献   
9.
10.
The population dynamics of a parasite depend on species traits, host dynamics and the environment. Those dynamics are reflected in the genetic structure of the population. Habitat fragmentation has a greater impact on parasites than on their hosts because resource distribution is increasingly fragmented for species at higher trophic levels. This could lead to either more or less genetic structure than the host, depending on the relative dispersal rates of species. We examined the spatial genetic structure of the parasitoid wasp Hyposoter horticola, and how it was influenced by dispersal, host population dynamics and habitat fragmentation. The host, the Glanville fritillary butterfly, lives as a metapopulation in a fragmented landscape in the Åland Islands, Finland. We collected wasps throughout the 50 by 70 km archipelago and determined the genetic diversity, spatial population structure and genetic differentiation using 14 neutral DNA microsatellite loci. We compared the genetic structure of the wasp with that of the host butterfly using published genetic data collected over the shared landscape. Using maternity assignment, we also identified full‐siblings among the sampled parasitoids to estimate the dispersal range of individual females. We found that because the parasitoid is dispersive, it has low genetic structure, is not very sensitive to habitat fragmentation and has less spatial genetic structure than its butterfly host. The wasp is sensitive to regional rather than local host dynamics, and there is a geographic mosaic landscape for antagonistic co‐evolution of host resistance and parasite virulence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号