首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   5篇
生物科学   60篇
  2018年   1篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   7篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
排序方式: 共有60条查询结果,搜索用时 0 毫秒
1.
The structures of water-soluble birch and beech xylans, extracted from holocellulose using dimethyl sulfoxide, were determined employing 1H and 13C NMR spectroscopy together with chemical analysis. These polysaccharides were found to be O-acetyl-(4-O-methylglucurono)xylans containing one 4-O-methylglucuronic acid substituent for approximately every 15 D-xylose residues. The average degree of acetylation of the xylose residues in these polymers was 0.4. The presence of the structural element -->4)[4-O-Me-alpha-D-GlcpA-(1-->2)][3-O-Ac]-beta-D-Xylp-(1--> was demonstrated. Additional acetyl groups were present as substituents at C-2 and/or C-3 of the xylopyranosyl residues. Utilizing size-exclusion chromatography in combination with mass spectroscopy, the weight-average molar masses (and polydispersities) were shown to be 8000 (1.09) and 11,100 (1.08) for birch and beech xylan, respectively.  相似文献   
2.
Methionyl-tRNA synthetase (MetRS) from Bacillus stearothermophilus was shown to undergo covalent methionylation by a donor methionyl-adenylate, the mixed carboxylic-phosphoric acid anhydride synthesized by the enzyme itself. Covalent reaction of methionyl-adenylate with the synthetase or other proteins proceeds through the formation of an isopeptide bond between the carboxylate of the amino acid and the -NH2 group of lysyl residues. The stoichiometries of labeling, as followed by TCA precipitation, were 2.2 ± 0.1 and 4.3 ± 0.1 mol of [14C]Met incorporated by 1 mol of the monomeric MS534 and the native dimeric species of B. stearo methionyl-tRNA synthetase, respectively. Matrix-assisted laser desorption-ionization mass spectrometry designated lysines-261, -295, -301 and -528 (or -534) of truncated methionyl-tRNA synthetase as the target residues for covalent binding of methionine. By analogy with the 3D structure of the monomeric M547 species of E. coli methionyl-tRNA synthetase, lysines-261, -295, and -301 would be located in the catalytic crevice of the thermostable enzyme where methionine activation and transfer take place. It is proposed that, once activated by ATP, most of the methionine molecules react with the closest reactive lysyl residues.  相似文献   
3.
A microfluidic structure is presented where selective capture of proteins in complex samples, followed by clean-up, enzymatic processing, and MALDI-MS sample preparation of peptides generated, can be performed. The structure uses an affinity column to capture the protein while all other components in the sample are disposed of. The protein of interest is then eluted from the affinity column and captured on a second column on which the enzymatic processing is performed. Salts and hydrophilic contaminants are then removed before the products from the enzymatic reaction are eluted together with a suitable MALDI matrix and the solvent evaporated in a designated MALDI target structure. All steps can be performed automatically in 54 parallel microstructures on a microfluidic compact disc. The process is demonstrated by the selective capture and tryptic digest of recombinant IgG molecules from samples containing other proteins: an excess of bovine serum albumin or spent cell culture media.  相似文献   
4.
Acyl carrier proteins of mitochondria (ACPMs) are small (∼ 10 kDa) acidic proteins that are homologous to the corresponding central components of prokaryotic fatty acid synthase complexes. Genomic deletions of the two genes ACPM1 and ACPM2 in the strictly aerobic yeast Yarrowia lipolytica resulted in strains that were not viable or retained only trace amounts of assembled mitochondrial complex I, respectively. This suggested different functions for the two proteins that despite high similarity could not be complemented by the respective other homolog still expressed in the deletion strains. Remarkably, the same phenotypes were observed if just the conserved serine carrying the phosphopantethein moiety was exchanged with alanine. Although this suggested a functional link to the lipid metabolism of mitochondria, no changes in the lipid composition of the organelles were found. Proteomic analysis revealed that both ACPMs were tightly bound to purified mitochondrial complex I. Western blot analysis revealed that the affinity tagged ACPM1 and ACPM2 proteins were exclusively detectable in mitochondrial membranes but not in the mitochondrial matrix as reported for other organisms. Hence we conclude that the ACPMs can serve all their possible functions in mitochondrial lipid metabolism and complex I assembly and stabilization as subunits bound to complex I.  相似文献   
5.
6.
Mass spectrometry imaging (MSI) methods and protocols have become widely adapted to a variety of tissues and species. However, the MSI literature contains minimal information on whole-body cryosection preparation for the zebrafish (ZF; Danio rerio), a model organism routinely used in developmental, toxicity, and carcinogenicity studies. The optimal medium for embedding and cryosectioning a whole organism or soft-tissue specimen for histological examination is a synthetic polymer mixture that is incompatible with MSI as a result of ion suppression. We describe the optimal methods and results for embedding and cryosectioning whole-body ZF for MALDI-MSI. We evaluated 13 distinct embedding media formulations and found a supportive hydrogel with the consistency of cartilage to be the optimal embedding medium. The hydrogel medium does not interfere with MSI data collection, aids in tissue stability, is readily available for purchase, and is easy to prepare and handle during cryosectioning. Additionally, we decreased the matrix cluster interference commonly caused by α-cyano-4-hydroxycinnamic acid by adding ammonium phosphate to the solvent spray solution. The optimized methods developed in our laboratory produced high-quality cryosections, as well as high-quality mass spectral images of sectioned ZF.  相似文献   
7.
Transfer RNAs are the most densely modified nucleic acid molecules in living cells. In Escherichia coli, more than 30 nucleoside modifications have been characterized, ranging from methylations and pseudouridylations to more complex additions that require multiple enzymatic steps. Most of the modifying enzymes have been identified, although a few notable exceptions include the 2′-O-methyltransferase(s) that methylate the ribose at the nucleotide 34 wobble position in the two leucyl isoacceptors tRNALeuCmAA and tRNALeucmnm5UmAA. Here, we have used a comparative genomics approach to uncover candidate E. coli genes for the missing enzyme(s). Transfer RNAs from null mutants for candidate genes were analyzed by mass spectrometry and revealed that inactivation of yibK leads to loss of 2′-O-methylation at position 34 in both tRNALeuCmAA and tRNALeucmnm5UmAA. Loss of YibK methylation reduces the efficiency of codon–wobble base interaction, as demonstrated in an amber suppressor supP system. Inactivation of yibK had no detectable effect on steady-state growth rate, although a distinct disadvantage was noted in multiple-round, mixed-population growth experiments, suggesting that the ability to recover from the stationary phase was impaired. Methylation is restored in vivo by complementing with a recombinant copy of yibK. Despite being one of the smallest characterized α/β knot proteins, YibK independently catalyzes the methyl transfer from S-adenosyl-L-methionine to the 2′-OH of the wobble nucleotide; YibK recognition of this target requires a pyridine at position 34 and N6-(isopentenyl)-2-methylthioadenosine at position 37. YibK is one of the last remaining E. coli tRNA modification enzymes to be identified and is now renamed TrmL.  相似文献   
8.
In the present study a direct detection approach combining size-exclusion chromatography (SEC) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight tandem-mass spectrometry (MALDI-QIT-TOF-MS/MS) was applied to investigate the influence of HSA and IgG on LDL oxidation in vitro. SEC analysis showed an increase of protein aggregation during LDL-oxidation that could be essentially suppressed in the presence of HSA. In parallel, lipid peroxidation measured by TBARS assay over 24 h was inhibited by 95–100% in the presence of HSA but only 0–34% by IgG, respectively. MALDI phospholipid profiles showed considerable decrease of signals from PCs containing sn-2 PUFAs (18:2 or 20:4) accompanied by increase of sn-2 LPCs indicating for specific breakdown of PUFA-containing PLs during LDL-oxidation. These effects were nearly 100% inhibited in the presence of HSA but not by IgG, respectively. Among known pro-atherogenic PL species present in human plasma sphingomyelin (SM16:0) was bound in significant amounts to HSA but not IgG after incubation with oxLDL. Moreover, our investigation showed that LPCs containing SAFAs (16:0 or 18:0) were specifically bound to HSA, while those containing PUFAs (18:2 and 18:3) were preferentially associated with IgG. In summary, the presented methodology provides a promising platform for studying lipid–protein interactions in vivo.  相似文献   
9.
Triacylglycerol profiling of marine microalgae by mass spectrometry   总被引:1,自引:0,他引:1  
We present a method for the determination of triacylglycerol (TAG) profiles of oleaginous saltwater microalgae relevant for the production of biofuels, bioactive lipids, and high-value lipid-based chemical precursors. We describe a technique to remove chlorophyll using quick, simple solid phase extraction (SPE) and directly compare the intact TAG composition of four microalgae species (Phaeodactylum tricornutum, Nannochloropsis salina, Nannochloropsis oculata, and Tetraselmis suecica) using MALDI time-of-flight (TOF) mass spectrometry (MS), ESI linear ion trap-orbitrap (LTQ Orbitrap) MS, and 1H NMR spectroscopy. Direct MS analysis is particularly effective to compare the polyunsaturated fatty acid (PUFA) composition for triacylglycerols because oxidation can often degrade samples upon derivatization. Using these methods, we observed that T. suecica contains significant PUFA levels with respect to other microalgae. This method is applicable for high-throughput MS screening of microalgae TAG profiles and may aid in the commercial development of biofuels.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号