首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2671篇
  免费   109篇
  国内免费   191篇
生物科学   2971篇
  2024年   5篇
  2023年   775篇
  2022年   46篇
  2021年   53篇
  2020年   55篇
  2019年   77篇
  2018年   55篇
  2017年   63篇
  2016年   48篇
  2015年   43篇
  2014年   94篇
  2013年   150篇
  2012年   78篇
  2011年   144篇
  2010年   100篇
  2009年   134篇
  2008年   129篇
  2007年   142篇
  2006年   114篇
  2005年   103篇
  2004年   83篇
  2003年   67篇
  2002年   50篇
  2001年   34篇
  2000年   25篇
  1999年   35篇
  1998年   26篇
  1997年   17篇
  1996年   20篇
  1995年   20篇
  1994年   29篇
  1993年   14篇
  1992年   12篇
  1991年   12篇
  1990年   13篇
  1989年   11篇
  1988年   10篇
  1987年   7篇
  1985年   6篇
  1984年   13篇
  1983年   13篇
  1982年   11篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2971条查询结果,搜索用时 0 毫秒
1.
2.
Method for production and regeneration of Lactobacillus delbrueckii protoplasts are described. The protoplasts were obtained by treatment with a mixture of lysozyme and mutanolysin in protoplast buffer at pH 6.5 with different osmotic stabilizers. The protoplasts were regenerated on deMan, Rogosa and Sharpe (MRS) with various osmotic stabilizers. Maximum protoplast formation was obtained in protoplast buffer with sucrose as an osmotic stabilizer using a combination of lysozyme (1 mg/ml) and mutanolysin (10 μg/ml). Maximum protoplast regeneration was obtained on MRS medium with sucrose (0.5 M) as an osmotic stabilizer. The regeneration medium was also applicable to other species of lactobacilli as well. This is, to our knowledge, the first report on protoplast formation and efficient regeneration in case of L. delbrueckii.  相似文献   
3.
Five-hundred-and-six fresh isolates of rumen bacteria were tested for their ability to hydrolyse the synthetic substrate for dipeptidyl aminopeptidase type I, GlyArg-4-methoxy-2-naphthylamide (GlyArg-MNA), using a gel overlay technique. Twelve positive isolates were small Gram-negative rods which resembled Bacteroides ruminicola in their biochemical and morphological properties. SDS-PAGE of whole cell extracts indicated that two were similar to B. ruminicola strain B14, six resembled B. ruminicola strain M384, and four were similar to B. ruminicola GA33. All hydrolysed GlyArg-MNA, Ala2 and Ala5, and showed no activity against Leu-MNA. Ala3 and Ala2, but no Ala4, was produced from Ala5. The different groups had different, distinctive activity profiles. The two remaining positive isolates were Lactobacillus spp. with an exceptionally high Leu-MNA activity. It was concluded that, although different strains may only be distantly related, B. ruminicola forms the most important group of bacteria in the rumen to possess a dipeptidyl aminopeptidase type I activity.  相似文献   
4.
Ta-Yan Leong  Jan M. Anderson 《BBA》1983,723(3):391-399
The hypothesis that chloroplasts having different light-saturated rates of photosynthesis will have different proportions of the intrinsic thylakoid complexes engaged in light-harvesting and electron transport (Anderson, J.M. (1982) Mol. Cell. Biochem. 46, 161–172) has been tested. Peas were grown in light regimes which varied in light intensity, quality and time of irradiance, and ranged from sunlight through red to blue-enriched light of very low radiation. The electron-transport capacity at saturating light of Photosystem I and Photosystem II of chloroplasts isolated from light-adapted peas was 2-fold and 5–6-fold lower, respectively, in the lowest radiation compared to sunlight. There was a marked increase in the amount of total chlorophyll associated with the main chlorophyll ab-proteins (LHCP1, LHCP2 and LHCP3) and a 2-fold decrease in the core reaction centre complex of Photosystem II (CP a) as the radiation decreased; the LHCP1–3CP a ratio changed from 3.5 to 9.0. The amount of chlorophyll associated with Photosystem I varied from 34% in sunlight to 27% in the lowest radiation, but the antenna size of Photosystem I was not markedly different; there was a 2-fold decrease in the amount of cytochrome f on a chlorophyll basis, which partly accounted for the decreased electron-transport capacity of Photosystem I. Since the increases or decreases in the levels of each of the components correlated with decreasing radiation, it is clear that the light-adaptation of both light-harvesting and electron-transport components is indeed closely co-ordinated.  相似文献   
5.
Summary The batch fermentation of whey permeate to lactic acid was improved markedly by the addition of enzymehydrolyzed whey protein. Acid concentrations greater than 90 g/l were achieved at a productivity of 4.3 g/l per h and a 98% substrate use. Cell mass concentration reached 6 g/l. The acid productivity achieved is somewhat higher than that typical for fermentation of whole whey. The process economics, based on in-house hydrolyzate preparation, look promising. Presented in this paper are the experimental results showing the effects of hydrolyzate concentration on acid and cell mass production.  相似文献   
6.
The intrinsic chlorophyll-protein CP 47 is a component of photosystem II which functions in both light-harvesting and oxygen evolution. Using site-directed mutagenesis we have produced the mutant W167S which lies in loop C of CP 47. This strain exhibited a 75% loss in oxygen evolution activity and grew extremely slowly in the absence of glucose. Examination of normalized oxygen evolution traces indicated that the mutant was susceptible to photoinactivation. Analysis of the variable fluorescence yield indicated that the mutant accumulated very few functional PS II reaction centers. This was confirmed by immunoblotting experiments. Interestingly, when W167S was grown in the presence of 20 M DCMU, the mutant continued to exhibit these defects. These results indicate that tryptophan 167 in loop C of CP 47 is important for the assembly and stability of the PS II reaction center.  相似文献   
7.
Homoionic Na-, Ca-, and Al-clays were prepared from the <2 m fractions of Georgia kaolinite and Wyoming bentonite and mixed with sand to give artificial soils with 5, and 25% clay. The artificial soils were inoculated with microbes from a natural soil before incubation. Unlabelled and uniformly13C-labelled (99.9% atom) glucose were incorporated into the artificial soils to study the effects of clay types, exchangeable cations and clay contents on the mineralization of glucose-carbon and glucose-derived organic materials. Chemical transformation of glucose-carbon upon incorporation into microbial products and metabolites, was followed using solid-state13C CP/MAS NMR spectroscopy.There was a significant influence of exchangeable cations on the mineralization of glucose-carbon over a period of 33 days. At 25% clay content, mineralization of glucose-carbon was highest in Ca-soils and lowest in Al-soils. The influence of exchangeable cations on mineralization of glucose-carbon was more pronounced in soils with bentonite clay than those with kaolinite clay. Statistical analysis of data showed no overall effect of clay type on mineralization of glucose-carbon. However, the interactions of clay type with clay content and clay type with clay content and exchangeable cations were highly significant. At 25% clay content, the mineralization of glucose-carbon was significantly lower in Na- and Al-soils with Wyoming bentonite compared with Na- and Al-soils with Georgia kaolinite. For Ca-soils this difference was not significant. Due to the increased osmotic tension induced by the added glucose, mineralization of glucose-carbon was slower in soils with 5% clay than soils with 25% clay.Despite the differences in the chemical and physical characteristics of soils with Ca-, Na- and Al-clays, the chemical composition of organic materials synthesised in these soils were similar in nature. Assuming CP/MAS is quantitative, incorporation of uniformly13C-labelled glucose (99.9% atom) in these soils resulted in distribution of carbon in alkyl (24–25%), O-alkyl (56–63%), carbonyl (11–15%) and small amounts of aromatic and olefinic carbon (2–4%). However, as decomposition proceeded, the chemistry of synthesised material showed some changes with time. In the Ca- and Na-soils, the proportions of alkyl and carbonyl carbon decreased and that of O-alkyl carbon increased with time of incubation. However, the opposite trend was found for the Al-soil.Proton-spin relaxation editing (PSRE) subspectra clearly showed heterogeneity within the microbial products. Subspectra of the slowly-relaxing (long T1(H)) domains were dominated by alkyl carbon in long- and short-chain structures. The signals due to N-alkyl (55 ppm) and carbonyl carbon were also strong in these subspectra. These subspectra were very similar to those obtained for microbial and fungal materials and were probably microbial tissues attached to clay surfaces by polysaccharide extracellular mucilage. Subspectra of fast-relaxing (short T1(H)) domains comprised mostly O-alkyl and carbonyl carbon and were probably microbial metabolites released as neutral and acidic sugars into the extracellular environment, and strongly sorbed by clay surfaces.  相似文献   
8.
提取干酪乳酸杆菌细胞壁成分(LC-CW),研究其抗肿瘤作用及其机理。结果表明:100μgLC-CW,ip,连续4天,可明显抑制小鼠S18腹水瘤移植物的生长,抑瘤率为54%。增强IL-2诱导的LAK杀伤活性,可明显促进小鼠NK杀伤活性,明显促进小鼠T细胞转化,促进ConA和PHA-P诱导的IL-2产生,促进SIL-2R的减少。研究结果表明LC-CW是一种重要的抗肿瘤免疫调节因子。  相似文献   
9.
Spontaneous, phenotypically stable mutations at the -galactosidase locus (lacL-lacM) in Lactobacillus helveticus were identified and analyzed. We found that a significant number of mutations were caused by integration of a new IS element, ISL2, into these lac genes. ISL2 is 858 by long, flanked by 16-bp perfect inverted repeats and generates 3-bp target duplications upon insertion. It contains one open reading frame, which shows significant homology (40.1 % identity) to the putative transposase of IS702 from Cyanobacterium calothrix. ISL2 is present in 4–21 copies in the L. helveticus genome, but it is not found in other lactic acid bacteria. Its divergence in copy number and genomic locations in different L. helveticus strains makes it useful as a tool for strain identification by genetic fingerprinting.  相似文献   
10.
Summary Predictive microbiology can be used to determine and predict the shelf-life of perishable foods under commercial distribution conditions based on microbial growth kinetics. This paper presents general microbial growth kinetics with the Monod model and the Gompertz function. Additional models are given to describe effects of food composition (e. g.a w) and environmental conditions (e.g. temperature, gas atmosphere) as well as their interaction on the growth kinetic parameters (lag time and specific growth rate). These models can be used to predict the time to reach a critical level under any constant conditions within the range tested. A combination of microbial kinetics with an engineering accumulation approach can be used to predict the final microbial level in a food, or the loss of shelf-life, for any known time-temperature sequence, if there is no history effect or the history effect is negligible. A time-temperature indicator, could be used for predicting the remaining shelf-life of perishable foods under any distribution condition based on microbial growth kinetics.Mention of brand or firm names does not constitute an endorsement by the US Department of Agriculture over others of a similar nature not mentioned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号