首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   81篇
  国内免费   664篇
生物科学   1017篇
  2024年   12篇
  2023年   32篇
  2022年   47篇
  2021年   36篇
  2020年   42篇
  2019年   35篇
  2018年   45篇
  2017年   34篇
  2016年   40篇
  2015年   28篇
  2014年   46篇
  2013年   41篇
  2012年   40篇
  2011年   32篇
  2010年   45篇
  2009年   39篇
  2008年   62篇
  2007年   44篇
  2006年   36篇
  2005年   33篇
  2004年   34篇
  2003年   44篇
  2002年   35篇
  2001年   22篇
  2000年   19篇
  1999年   18篇
  1998年   12篇
  1997年   3篇
  1996年   11篇
  1995年   5篇
  1994年   9篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1979年   1篇
  1975年   1篇
  1958年   1篇
  1957年   1篇
  1956年   2篇
排序方式: 共有1017条查询结果,搜索用时 15 毫秒
1.
2.
党的十四大指出,环境保护是我国的一项基本国策。在加快发展经济的同时,“要增强全民族的环境意 U 识,保护和合理利用土地、矿茬、森林、水等自然资源,努力改善生态环境”。中共广东省委关于加快广东现代化建设步伐的主要措施也强调要“搞好环境保护,保持生态平衡,促进社会全面进步”。广东力争20年基本实现现代化,赶上亚洲“四小龙”。如果由人民币换算为可比的美元,按“购买力平价法”即1美元相当于1.25元人民币,而且预测“四小龙”今后20年人均国民生产总值年均  相似文献   
3.
恢复生态学与植被重建   总被引:89,自引:0,他引:89  
彭少麟 《生态科学》1996,15(2):26-31
恢复生态学是现代最重要的分支学科之一,其理论与方法均在不断发展之中。本文论述恢复生态学的理论、方法与实践,并探讨热带亚热带区域地带性植被的恢复途径及其效益  相似文献   
4.
在系统调查分析和特尔斐测定的基础上,选取人口密度、耕地人口负荷量、土地工业经济密度、居民点、厂矿用地、>25°土地面积、单位森林蓄积占用土地、耕地非旱涝保收面积7项指标,应用分值权重累加、系统聚类分析和模糊综合评价3种方法对杭州湾6市土地生态环境作综合分析评价,结果可应用于国土规划实践,对探讨土地生态环境评价的理论与方法有参考价值。  相似文献   
5.
齐之尧  叶楝  黎焕琦   《广西植物》1982,(1):37-39
<正> 土壤侵蚀是由于人类不合理的经济活动引起的生态平衡失调,水、土、肥流失,生产力减低,从而威胁人民生产、生活的现象。它不仅会造成水土流失地区本身受害,而且会使江河中的流水暴涨暴落,流水中泥沙含量增加,淤塞水库、湖泊、旱涝成灾,影响灌溉、发电、通航,危害农业、工业、交通,甚至危及人民生命财产安全。  相似文献   
6.
蒋勇军 《生态学报》2019,39(16):6058-6060
在国家重点研发计划项目——"喀斯特槽谷区土地石漠化过程及综合治理技术研发与示范(2016YFC0502300)"的支持下,经过项目组全体成员三年的共同努力,在喀斯特槽谷区生态退化与修复方面取得了一些重要进展。主要有:(1)2000—2015年槽谷区土壤侵蚀总量逐年减少,年平均侵蚀模数逐年降低,槽谷区植被覆盖明显提高;(2)拉巴豆地埂篱根土复合体不仅能有效提高喀斯特土壤的粒径大小和增强土体的抗剪/冲性能,并且能够利用大气N_2合成植物生长所需的氮肥,从而提高土壤肥力,可望实现石漠化治理中生态效应和经济效应的双赢;(3)喀斯特槽谷区隧道建设改变了地下水流场并降低了地下水位,进而降低了土壤微生物丰度和多样性,而增加了适应干旱的微生物种群,并导致土壤质量的降低;隧道建设加速了坡面产流和土壤流失,加剧了土地石漠化,从而导致生态退化;(4)随着槽谷区退化生态系统的恢复,生态系统的生态服务功能得到提升。  相似文献   
7.
徐莹  关晋宏  邓磊 《生态学报》2024,44(13):5554-5566
为揭示高寒半干旱区不同降雨强度对植被差异下沙化土地土壤含水量变化过程的影响。以青海共和盆地东缘黄沙头乔木、灌木和裸地为研究对象,基于2020、2021和2022年5月-9月植物生长季土壤含水量、降雨量和细根分布监测数据,分析2020年、2021年、2022年各生境0-200 cm深度土壤水分对小雨、中雨、大雨的响应。连续动态监测结果表明,大雨、中雨条件下,随土层深度的增加土壤水分对降雨的响应时间延长。乔木林和灌木林土壤水分对中雨、大雨最大响应深度为70 cm、100 cm,裸地对中雨、大雨最大响应深度为50 cm、100 cm。随土层深度的增加,小雨对乔木、灌木、裸地土壤水分的补充作用逐渐降低;中雨对灌木林土壤水分的补充作用逐渐降低,乔木林与之相反;大雨时乔木林、灌木林变异系数呈现S型变化,因此大雨对其土壤水分的补充存在明显的分层利用现象。不同植被类型土壤水分空间变化差异以及对降雨的响应受植被冠层截留对降水再分配的影响,土壤含水量与环境因子间的主成分分析表明,郁闭度、叶面积指数、150-200 cm土壤容重、细根生物量密度、根表面积密度、根长密度、比根长是反映研究区土壤水分的显著因子(P < 0.05)。研究表明不同降雨强度植被土壤含水量存在明显差异,高寒半干旱区沙化土地乔、灌植被的建植可提升深层土壤储水能力;结果可为沙化土地恢复和水土流失防控提供科学依据。  相似文献   
8.
植被恢复对土壤营养元素的存赋及其生态化学计量特征的影响广受关注,为了深入了解不同植被恢复类型下土壤碳、氮、磷储量与生态化学计量特征,选择滇中地区退化山地飒马场流域具有代表性的4种不同修复阶段的典型植被(荒坡灌草丛、云南松林、针阔混交林和次生常绿阔叶林)为研究对象,分析了不同植被类型下不同深度土壤中有机碳(SOC)、全氮(TN)、全磷(TP)储量和化学计量变化特征。结果表明,退化山地的植被恢复显著改变土壤碳氮磷储存能力和化学计量比,这种改变作用整体上随土壤深度增加而降低。其中,在0—60 cm土层上,SOC储量在次生常绿阔叶林最高,达123.41 t/hm2,其次是针阔混交林(115.69 t/hm2)和云南松林(93.08 t/hm2),荒坡灌草丛(89.56 t/hm2)最低;TN储量针阔混交林(4.91 t/hm2)>次生常绿阔叶林(4.58 t/hm2)>云南松林(4.43 t/hm2)>荒坡灌草丛(3.98 ...  相似文献   
9.
石羊河流域土地覆被空间演化及驱动机制   总被引:1,自引:0,他引:1  
石培基  王祖静  刘春芳 《生态学报》2014,34(15):4361-4371
基于石羊河流域1998年、2002年、2006年、2010年NDVI、夜间灯光数据和TM影像提取的土壤信息,以城市地表人工覆被系统为基础,计算流域土地覆被指数(Land-Cover Index,LCI),利用小波分析、空间变差函数和间隙度指数等方法构建测度模型,分析了石羊河流域地区十多年来的土地人工覆被空间演化过程和格局,然后利用回归拟合方程找出影响地区土地覆被变化的驱动机制。结果表明:LCI大范围分布受地形限制,高值区(城镇用地区域)值越来越高,而低值区(植被覆盖区域)值在2002年形成了峰值后下降,即地区城镇化水平显著提高的同时,林草覆盖率缓慢变好,并且逐渐形成区域簇群,同时地区城镇化水平受人为因素的影响较大,植被覆盖度受自然因素的影响较大。  相似文献   
10.
张心昱  陈利顶  傅伯杰  李琪  齐鑫  马岩 《生态学报》2006,26(10):3198-3204
自20世纪80年代以来,我国农业土地利用方式和农田管理发生了巨大变化,由此引起的土壤有机碳(SOC)含量、密度及其垂直分布发生了相应的变化,研究不同土地利用方式和管理对土壤有机碳的影响对于探讨农田生态系统的固碳作用具有重要的意义.以北京市延怀盆地为典型研究地区,选择6种农业土地利用和管理模式,共计42块样地,在1m深土体内分层采集197个土壤样品.研究结果表明:(1) 不同农业土地利用和管理方式对SOC含量的影响主要发生在0~25 cm土层中,剖面中SOC含量自上向下明显降低.(2) 通过对6种土地利用和管理方式下土壤SOC含量进行比较,结果发现果园和高投入的玉米地土壤在0~100 cm土层中SOC含量均较高,变化范围分别为4.16~10.00 g kg^-1和4.73~9.31 g kg^-1; 菜地土壤在0~40 cm土层中SOC含量较高,变化范围为6.42~9.67 g kg^-1;大豆地、中、低投入玉米地土壤在0~100 cm土层中SOC含量较低,变化范围分别为3.27~7.73 g kg^-1、3.14~8.33 g kg^-1和1.83~7.67 g kg^-1. (3) 不同农业土地利用方式对SOC密度影响的趋势与对SOC含量影响的趋势基本一致,在0~100 cm土壤中,SOC密度的顺序为果园>菜地>高投入玉米地>中投入玉米地>大豆地>低投入玉米地,变化范围为4.15~8.22 kg m^-2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号