首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87610篇
  免费   22215篇
  国内免费   2714篇
工业技术   112539篇
  2024年   97篇
  2023年   369篇
  2022年   582篇
  2021年   1106篇
  2020年   3734篇
  2019年   6254篇
  2018年   5739篇
  2017年   6639篇
  2016年   6573篇
  2015年   6532篇
  2014年   7091篇
  2013年   7454篇
  2012年   7167篇
  2011年   6943篇
  2010年   5613篇
  2009年   5198篇
  2008年   5099篇
  2007年   5266篇
  2006年   4745篇
  2005年   3808篇
  2004年   3275篇
  2003年   3000篇
  2002年   2641篇
  2001年   2291篇
  2000年   1929篇
  1999年   1243篇
  1998年   400篇
  1997年   326篇
  1996年   321篇
  1995年   267篇
  1994年   188篇
  1993年   131篇
  1992年   116篇
  1991年   94篇
  1990年   70篇
  1989年   59篇
  1988年   44篇
  1987年   29篇
  1986年   26篇
  1985年   21篇
  1984年   15篇
  1983年   9篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline molecules prefer to covalently connect to the graphene oxide matrix via chemical grafting, while napthalene amine molecules bind with the graphene oxide surface through π–π interactions. The presence of intercalated aromatic molecules between the graphene oxide layers is demonstrated by X‐ray diffraction, while the type of interaction between graphene oxide and polycyclic organic molecules is elucidated by X‐ray photoelectron spectroscopy. Combined quantum mechanical and molecular mechanical calculations describe the intercalation mechanism and the aniline grafting, rationalizing the experimental data. The present work opens new perspectives for the interaction of various aromatic molecules with graphite oxide and the so‐called “intercalation chemistry”.  相似文献   
3.
The principles and design of “active” self‐propelling particles that can convert energy, move directionally on their own, and perform a certain function is an emerging multidisciplinary research field, with high potential for future technologies. A simple and effective technique is presented for on‐demand steering of self‐propelling microdiodes that move electroosmotically on water surface, while supplied with energy by an external alternating (AC) field. It is demonstrated how one can control remotely the direction of diode locomotion by electronically modifying the applied AC signal. The swimming diodes change their direction of motion when a wave asymmetry (equivalent to a DC offset) is introduced into the signal. The data analysis shows that the ability to control and reverse the direction of motion is a result of the electrostatic torque between the asymmetrically polarized diodes and the ionic charges redistributed in the vessel. This novel principle of electrical signal‐coded steering of active functional devices, such as diodes and microcircuits, can find applications in motile sensors, MEMs, and microrobotics.  相似文献   
4.
5.
Glyco‐mimicking nanoparticles (glyco‐NPs) with Förster resonance energy transfer (FRET) donor and acceptor groups formed via dynamic covalent bond of benzoboroxole and sugar from two complementary polymers are prepared. The glyco‐NPs are proved to be quite stable under physiological conditions but sensitive to pH. So the glyco‐NPs can be internalized by dendritic cells with integrity and nontoxicity and then dissociate within the acidic organelles. This particle dissociation is directly observed and visualized in vitro, for the first time via the FRET measurements and fluorescent microscopy. This feature makes controlled release of drug or protein by glyco‐NPs possible, i.e., when model antigen Ovalbumin is loaded in the glyco‐NPs, the released Ovalbumin in dendritic cells stimulates T cells more efficiently than the free Ovalbumin itself as a result of the enhanced antigen processing and presentation. Thus, the results enlighten a bright future of the glyco‐NPs in immunotherapy.  相似文献   
6.
Innumerable casualties due to intrauterine hypoxia are a major worry during prenatal phase besides advanced patient monitoring with latest science and technology. Hence, the analysis of foetal electrocardiogram (fECG) signals is very vital in order to evaluate the foetal heart status for timely recognition of cardiac abnormalities. Regrettably, the latest technology in the cutting edge field of biomedical signal processing does not seem to yield the desired quality of fECG signals required by physicians, which is the major cause for the pathetic condition. The focus of this work is to extort non-invasive fECG signal with highest possible quality with a motive to support physicians in utilizing the methodology for the latest intrapartum monitoring technique called STAN (ST analysis) for forecasting intrapartum foetal hypoxia. However, the critical quandary is that the non-invasive fECG signals recorded from the maternal abdomen are affected by several interferences like power line interference, baseline drift interference, electrode motion interference, muscle movement interference and the maternal electrocardiogram (mECG) being the dominant interference. A novel hybrid methodology called BANFIS (Bayesian adaptive neuro fuzzy inference system) is proposed. The BANFIS includes a Bayesian filter and an adaptive neuro fuzzy filter for mECG elimination and non-linear artefacts removal to yield high quality fECG signal. Kalman filtering frame work has been utilized to estimate the nonlinear transformed mECG component in the abdominal electrocardiogram (aECG). The adaptive neuro fuzzy filter is employed to discover the nonlinearity of the nonlinear transformed version of mECG and to align the estimated mECG signal with the maternal component in the aECG signal for annulment. The outcomes of the investigation by the proposed BANFIS system proved valuable for STAN system for efficient prediction of foetal hypoxia.  相似文献   
7.
The design of a microstrip‐fed annular‐ring slot antenna (ARSA) with circular polarization (CP) radiation is initially studied. To obtain CP radiation with broad 3‐dB axial ratio (AR) bandwidth that can cover the WiMAX 2.3 GHz (2305–2320 MHz, 2345–2360 MHz) and WLAN 2.4 GHz (2400–2480 MHz) bands, a novel technique of extending an inverted L‐shaped slot from the bottom section of the annular‐ring is proposed. To suppress the harmonic modes induced by the CP ARSA, the technique of integrating a defected ground structure into the annular‐ring slot is further introduced. From the measured results, 10‐dB impedance bandwidth and 3‐dB AR bandwidth of 44.86 and 9.68% were achieved by the proposed harmonic suppressed CP ARSA. Furthermore, average gain and radiation efficiency of ~4.7 dBic and 71%, respectively, were also exhibited across the bands of interest. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:337–345, 2015.  相似文献   
8.
This paper introduces two novel nonlinear stochastic attitude estimators developed on the Special Orthogonal Group with the tracking error of the normalized Euclidean distance meeting predefined transient and steady‐state characteristics. The tracking error is confined to initially start within a predetermined large set such that the transient performance is guaranteed to obey dynamically reducing boundaries and decrease smoothly and asymptotically to the origin in probability from almost any initial condition. The proposed estimators produce accurate attitude estimates with remarkable convergence properties using measurements obtained from low‐cost inertial measurement units. The estimators proposed in continuous form are complemented by their discrete versions for the implementation purposes. The simulation results illustrate the effectiveness and robustness of the proposed estimators against uncertain measurements and large initialization error, whether in continuous or discrete form.  相似文献   
9.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
10.
We present a distribution‐free tabular cumulative sum chart for monitoring the variability of an autocorrelated process. A quantity known as the asymptotic variance parameter is employed as a measure of the variability, and a distribution‐free tabular cumulative sum chart is applied to variance estimates calculated from batches of nonoverlapping samples. The proposed chart is applicable to a stationary process with a general marginal distribution and a general autocorrelation structure. It also determines control limits analytically without trial‐and‐error simulations. The performance of the proposed chart is tested on stationary processes with both normal and nonnormal marginals with various autocorrelation structures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号