首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
工业技术   24篇
  2014年   1篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Search games are attractive for their correspondence with classical width parameters. For instance, the invisible search number (a.k.a. node search number) of a graph is equal to its pathwidth plus 1, and the visible search number of a graph is equal to its treewidth plus 1. The connected variants of these games ask for search strategies that are connected, i.e., at every step of the strategy, the searched part of the graph induces a connected subgraph. We focus on monotone search strategies, i.e., strategies for which every node is searched exactly once. The monotone connected visible search number of an n-node graph is at most O(logn) times its visible search number. First, we prove that this logarithmic bound is tight. Precisely, we prove that there is an infinite family of graphs for which the ratio monotone connected visible search number over visible search number is Ω(logn). Second, we prove that, as opposed to the non-connected variant of visible graph searching, “recontamination helps” for connected visible search. Precisely, we prove that, for any k4, there exists a graph with connected visible search number at most k, and monotone connected visible search number >k  相似文献   
2.
3.
We study the problem of decomposing the vertex set VV of a graph into two nonempty parts V1,V2V1,V2 which induce subgraphs where each vertex v∈V1vV1 has degree at least a(v)a(v) inside V1V1 and each v∈V2vV2 has degree at least b(v)b(v) inside V2V2. We give a polynomial-time algorithm for graphs with bounded treewidth which decides if a graph admits a decomposition, and gives such a decomposition if it exists. This result and its variants are then applied to designing polynomial-time approximation schemes for planar graphs where a decomposition does not necessarily exist but the local degree conditions should be met for as many vertices as possible.  相似文献   
4.
We introduce nondeterministic graph searching with a controlled amount of nondeterminism and show how this new tool can be used in algorithm design and combinatorial analysis applying to both pathwidth and treewidth. We prove equivalence between this game-theoretic approach and graph decompositions called q -branched tree decompositions, which can be interpreted as a parameterized version of tree decompositions. Path decomposition and (standard) tree decomposition are two extreme cases of q-branched tree decompositions. The equivalence between nondeterministic graph searching and q-branched tree decomposition enables us to design an exact (exponential time) algorithm computing q-branched treewidth for all q≥0, which is thus valid for both treewidth and pathwidth. This algorithm performs as fast as the best known exact algorithm for pathwidth. Conversely, this equivalence also enables us to design a lower bound on the amount of nondeterminism required to search a graph with the minimum number of searchers. Additional support of F.V. Fomin by the Research Council of Norway. Additional supports of P. Fraigniaud from the INRIA Project “Grand Large”, and from the Project PairAPair of the ACI “Masse de Données”. Additional supports of N. Nisse from the Project Fragile of the ACI “Sécurité & Informatique”.  相似文献   
5.
Covering problems are fundamental classical problems in optimization, computer science and complexity theory. Typically an input to these problems is a family of sets over a finite universe and the goal is to cover the elements of the universe with as few sets of the family as possible. The variations of covering problems include well-known problems like Set Cover, Vertex Cover, Dominating Set and Facility Location to name a few. Recently there has been a lot of study on partial covering problems, a natural generalization of covering problems. Here, the goal is not to cover all the elements but to cover the specified number of elements with the minimum number of sets. In this paper we study partial covering problems in graphs in the realm of parameterized complexity. Classical (non-partial) version of all these problems has been intensively studied in planar graphs and in graphs excluding a fixed graph H as a minor. However, the techniques developed for parameterized version of non-partial covering problems cannot be applied directly to their partial counterparts. The approach we use, to show that various partial covering problems are fixed parameter tractable on planar graphs, graphs of bounded local treewidth and graph excluding some graph as a minor, is quite different from previously known techniques. The main idea behind our approach is the concept of implicit branching. We find implicit branching technique to be interesting on its own and believe that it can be used for some other problems.  相似文献   
6.
A t-spanner of a graph G is a spanning subgraph S in which the distance between every pair of vertices is at most t times their distance in G. If S is required to be a tree then S is called a tree t-spanner of G. In 1998, Fekete and Kremer showed that on unweighted planar graphs deciding whether G admits a tree t-spanner is polynomial time solvable for t?3 and is NP-complete when t is part of the input. They also left as an open problem if the problem is polynomial time solvable for every fixed t?4. In this work we resolve the open question of Fekete and Kremer by proving much more general results:
  • • 
    The problem of finding a t-spanner of treewidth at most k in a given planar graph G is fixed parameter tractable parameterized by k and t. Moreover, for every fixed t and k, the running time of our algorithm is linear.
  • • 
    Our technique allows to extend the result from planar graphs to much more general classes of graphs. An apex graph is a graph that can be made planar by the removal of a single vertex. We prove that the problem of finding a t-spanner of treewidth k is fixed parameter tractable on graphs that do not contain some fixed apex graph as a minor, i.e. on apex-minor-free graphs. The class of apex-minor-free graphs contains planar graphs and graphs of bounded genus.
  • • 
    Finally, we show that the tractability border of the t-spanner problem cannot be extended beyond the class of apex-minor-free graphs and in this sense our results are tight. In particular, for every t?4, the problem of finding a tree t-spanner is NP-complete on K6-minor-free graphs.
  相似文献   
7.
A c-vertex-ranking of a graph G for a positive integer c is a labeling of the vertices of G with integers such that, for any label i, deletion of all vertices with labels >i leaves connected components, each having at most c vertices with label i. A c-vertex-ranking is optimal if the number of labels used is as small as possible. We present sequential and parallel algorithms to find an optimal c-vertex-ranking of a partial k-tree, that is, a graph of treewidth bounded by a fixed integer k. The sequential algorithm takes polynomial-time for any positive integer c. The parallel algorithm takes O(log n) parallel time using a polynomial number of processors on the common CRCW PRAM, where n is the number of vertices in G.  相似文献   
8.
Pathwidth of cubic graphs and exact algorithms   总被引:2,自引:0,他引:2  
We prove that for any ?>0 there exists an integer n? such that the pathwidth of every cubic (or 3-regular) graph on n>n? vertices is at most (1/6+?)n. Based on this bound we improve the worst case time analysis for a number of exact exponential algorithms on graphs of maximum vertex degree three.  相似文献   
9.
A widely accepted rational behavior for non-cooperative players is based on the notion of Nash equilibrium. Although the existence of a Nash equilibrium is guaranteed in the mixed framework (i.e., when players select their actions in a randomized manner) in many real-world applications the existence of “any” equilibrium is not enough. Rather, it is often desirable to single out equilibria satisfying some additional requirements (in order, for instance, to guarantee a minimum payoff to certain players), which we call constrained Nash equilibria.In this paper, a formal framework for specifying these kinds of requirement is introduced and investigated in the context of graphical games, where a player p may directly be interested in some of the other players only, called the neighbors of p. This setting is very useful for modeling large population games, where typically each player does not directly depend on all the players, and representing her utility function extensively is either inconvenient or infeasible.Based on this framework, the complexity of deciding the existence and of computing constrained equilibria is then investigated, in the light of evidencing how the intrinsic difficulty of these tasks is affected by the requirements prescribed at the equilibrium and by the structure of players’ interactions. The analysis is carried out for the setting of mixed strategies as well as for the setting of pure strategies, i.e., when players are forced to deterministically choose the action to perform. In particular, for this latter case, restrictions on players’ interactions and on constraints are identified, that make the computation of Nash equilibria an easy problem, for which polynomial and highly-parallelizable algorithms are presented.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号