首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   19篇
  国内免费   11篇
工业技术   438篇
  2024年   1篇
  2023年   9篇
  2022年   51篇
  2021年   54篇
  2020年   9篇
  2019年   11篇
  2018年   11篇
  2017年   13篇
  2016年   18篇
  2015年   13篇
  2014年   26篇
  2013年   27篇
  2012年   25篇
  2011年   22篇
  2010年   26篇
  2009年   25篇
  2008年   17篇
  2007年   19篇
  2006年   12篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   6篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
1.
依据柠檬酸的螯合作用和乙二醇的空间位阻效应,获得了稀土混合物囊泡。并利用ICP、TEM、FS等仪器对囊泡的性能进行了研究,最后对囊泡的形成机理进行了讨论。  相似文献   
2.
The bio- inspired strategy of triggered release of Ca^2+ , Pi, F from prosomal compartments was used to induce rapid formation of FHA for potential dental use : Calcium and inorganic phosphate salts were separately loaded into temperature-sensitive liposome composed of 90% DPPC and 10% DMPC. When heated from the room temperature to 35- 37 ℃ , the entrapped calcium, inorganic phosphate and fl~rin released from the liposome,A mixture of Ca- Pi and F-loaded liposome formed apatite. The mineral was indicated by a rapid drop in suspension PH from 7.4 approximately 6. This was illustrated by applying a liposome suspension warmed human dentin and enamel surface which resulted in deposition of apatite onto the tissue substrates.  相似文献   
3.
Megakaryocytes release submicron size microparticles (MkMPs) in circulation. We have shown that MkMPs target CD34+ hematopoietic stem/progenitor cells (HSPCs) to induce megakaryocytic differentiation, and that small RNAs in MkMPs play an important role in the development of this phenotype. Here, using single-molecule real-time (SMRT) RNA sequencing (RNAseq), we identify the synergetic effect of two microRNAs (miRs), miR-486-5p and miR-22-3p (highly enriched in MkMPs), in driving the Mk differentiation of HSPCs in the absence of thrombopoietin (TPO). Separately, our data suggest that the MkMP-induced Mk differentiation of HSPCs is enabled through JNK and PI3K/Akt/mTOR signaling. The interaction between the two signaling pathways is likely mediated by a direct target of miR-486-5p and a negative regulator of PI3K/Akt signaling, the phosphatase and tensin homologue (PTEN) protein. Our data provide a possible mechanistic explanation of the biological effect of MkMPs in inducing megakaryocytic differentiation of HSPCs, a phenotype of potential physiological significance in stress megakaryopoiesis.  相似文献   
4.
Prostate cancer (PCa) is the most commonly diagnosed malignancy among men in developed countries. The five-year survival rate for men diagnosed with early-stage PCa is approximately 100%, while it is less than 30% for castration-resistant PCa (CRPC). Currently, the detection of prostate-specific antigens as biomarkers for the prognosis of CRPC is criticized because of its low accuracy, high invasiveness, and high false-positive rate. Therefore, it is important to identify new biomarkers for prediction of CRPC progression. Extracellular vesicles (EVs) derived from tumors have been highlighted as potential markers for cancer diagnosis and prognosis. Specifically, urinary EVs directly reflect changes in the pathophysiological conditions of the urogenital system because it is exposed to prostatic secretions. Thus, detecting biomarkers in urinary EVs provides a promising approach for performing an accurate and non-invasive liquid biopsy for CPRC. In this study, we effectively isolated urinary EVs with low protein impurities using size-exclusion chromatography combined with ultrafiltration. After EV isolation and characterization, we evaluated the miRNAs in urinary EVs from healthy donors and patients with CRPC. The results indicated that miRNAs (miR-21-5p, miR-574-3p, and miR-6880-5p) could be used as potential biomarkers for the prognosis of CRPC. This analysis of urinary EVs contributes to the fast and convenient prognosis of diseases, including CRPC, in the clinical setting.  相似文献   
5.
With the development of super‐resolution fluorescence microscopy, complex dynamic processes in living cells can be observed and recorded with unprecedented temporal and spatial resolution. Single particle tracking (SPT) is the most important step to explore the relationship between the spatio‐temporal dynamics of subcellular molecules and their functions. Although previous studies have developed SPT algorithms to quantitatively analyze particle dynamics in cell, traditional tracking methods have poor performance when dealing with intersecting trajectories. This can be attributed to two main reasons: (a) they do not have point compensation process for overlapping objects; (b) they use inefficient motion prediction models. In this paper, we present a novel fan‐shaped tracker (FsT) algorithm to reconstruct the trajectories of subcellular vesicles in living cells. We proposed a customized point compensation method for overlapping objects based on the fan‐shaped motion trend of the particles. Furthermore, we validated the performance of the FsT in both simulated time‐lapse movies with variable imaging quality and in real vesicle moving images. Meanwhile, we compared the performance of FsT with other five state‐of‐the‐art tracking algorithms by using commonly defined measures. The results showed that our FsT achieves better performance in high signal‐to‐noise ratio conditions and in tracking of overlapping objects. We anticipate that our FsT method will have vast applications in tracking of moving objects in cell.  相似文献   
6.
Escherichia coli K1 is a leading cause of neonatal bacterial meningitis. Recruitment of neutrophils to the central nervous system (CNS) via local immune response plays a critical role in defense against E. coli K1 infection; however, the mechanism underlying this recruitment remains unclear. In this study, we report that microglia and astrocytes are activated in response to stimulation by E. coli K1 and/or E. coli K1-derived outer membrane vesicles (OMVs) and work collaboratively to drive neutrophil recruitment to the CNS. Microglial activation results in the release of the pro-inflammatory cytokine TNF-α, which activates astrocytes, resulting in the production of CXCL1, a chemokine critical for recruiting neutrophils. Mice lacking either microglia or TNF-α exhibit impaired production of CXCL1, impaired neutrophil recruitment, and an increased CNS bacterial burden. C-X-C chemokine receptor 2 (CXCR2)-expressing neutrophils primarily respond to CXCL1 released by astrocytes. This study provides further insights into how immune responses drive neutrophil recruitment to the brain to combat E. coli K1 infection. In addition, we show that direct recognition of E. coli K1 by microglia is prevented by the K1 capsule. This study also reveals that OMVs are sufficient to induce microglial activation.  相似文献   
7.
Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell–cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid–solid or solid–fluid interfaces, peeling at fluid–fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction–diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.  相似文献   
8.
To advance organ-on-a-chip development and other areas befitting from physiologically-relevant biomembranes,a microfluidic platform is presented for synthesis of biomembranes during gelation and investigation into their role as extracellular matrix supports.In this work,high-throughput studies of collagen,chitosan,and collagen-chitosan hybrid biomembranes were carried out to characterize and compare key properties as a function of the applied hydrodynamic conditions during gelation.Specifically,depending on the biopolymer material used,varying flow conditions during biomembrane gelation caused width,uniformity,and swelling ratio to be differently affected and controllable.Finally,cell viability studies of seeded fibroblasts were conducted,thus showing the potential for biological applications.  相似文献   
9.
Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs) carry various proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs), like a “message in a bottle” to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems.  相似文献   
10.
We fabricated CaCO3-coated vesicles as drug carriers that release their cargo under a weakly acidic condition. We designed and synthesized a peptide lipid containing the Val-His-Val-Glu-Val-Ser sequence as the hydrophilic part, and with two palmitoyl groups at the N-terminal as the anchor groups of the lipid bilayer membrane. Vesicles embedded with the peptide lipids were prepared. The CaCO3 coating of the vesicle surface was performed by the mineralization induced by the embedded peptide lipid. The peptide lipid produced the mineral source, CO32−, for CaCO3 mineralization through the hydrolysis of urea. We investigated the structure of the obtained CaCO3-coated vesicles using transmission electron microscopy (TEM). The vesicles retained the spherical shapes, even in vacuo. Furthermore, the vesicles had inner spaces that acted as the drug cargo, as observed by the TEM tomographic analysis. The thickness of the CaCO3 shell was estimated as ca. 20 nm. CaCO3-coated vesicles containing hydrophobic or hydrophilic drugs were prepared, and the drug release properties were examined under various pH conditions. The mineralized CaCO3 shell of the vesicle surface was dissolved under a weakly acidic condition, pH 6.0, such as in the neighborhood of cancer tissues. The degradation of the CaCO3 shell induced an effective release of the drugs. Such behavior suggests potential of the CaCO3-coated vesicles as carriers for cancer therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号