首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18586篇
  免费   2789篇
  国内免费   959篇
工业技术   22334篇
  2024年   114篇
  2023年   637篇
  2022年   496篇
  2021年   802篇
  2020年   917篇
  2019年   870篇
  2018年   745篇
  2017年   869篇
  2016年   851篇
  2015年   842篇
  2014年   1300篇
  2013年   1236篇
  2012年   1361篇
  2011年   1354篇
  2010年   1003篇
  2009年   1042篇
  2008年   856篇
  2007年   1118篇
  2006年   1034篇
  2005年   881篇
  2004年   683篇
  2003年   653篇
  2002年   457篇
  2001年   421篇
  2000年   361篇
  1999年   245篇
  1998年   179篇
  1997年   179篇
  1996年   139篇
  1995年   120篇
  1994年   112篇
  1993年   74篇
  1992年   66篇
  1991年   54篇
  1990年   44篇
  1989年   32篇
  1988年   21篇
  1987年   25篇
  1986年   16篇
  1985年   29篇
  1984年   19篇
  1983年   16篇
  1982年   13篇
  1981年   6篇
  1980年   7篇
  1979年   5篇
  1978年   3篇
  1975年   3篇
  1964年   2篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
The strong tendency of organic nanoparticles to rapidly self‐assemble into highly aligned superlattices at room temperature when solution‐cast from dispersions or spray‐coated directly onto various substrates is described. The nanoparticle dispersions are stable for years. The novel precipitation process used is believed to result in molecular distances and alignments in the nanoparticles that are not normally possible. Functional organic light‐emitting diodes (OLEDs)—which have the same host–dopant emissive‐material composition—with process‐tunable electroluminescence have been built with these nanoparticles, indicating the presence of novel nanostructures. For example, only changing the conditions of the precipitation process changes the OLED emission from green light to yellow.  相似文献   
2.
In this paper, we describe a method for increasing the external efficiency of polymer light‐emitting diodes (LEDs) by coupling out waveguided light with Bragg gratings. We numerically model the waveguide modes in a typical LED structure and demonstrate how optimizing layer thicknesses and reducing waveguide absorption can enhance the grating outcoupling. The gratings were created by a soft‐lithography technique that minimizes changes to the conventional LED structure. Using one‐dimensional and two‐dimensional gratings, we were able to increase the forward‐directed emission by 47 % and 70 %, respectively, and the external quantum efficiency by 15 % and 25 %.  相似文献   
3.
Efficient blue‐, green‐, and red‐light‐emitting organic diodes are fabricated using binuclear platinum complexes as phosphorescent dopants. The series of complexes used here have pyrazolate bridging ligands and the general formula CNPt(μ‐pz)2PtCN (where CN = 2‐(4′,6′‐difluorophenyl)pyridinato‐N,C2′, pz = pyrazole ( 1 ), 3‐methyl‐5‐tert‐butylpyrazole ( 2 ), and 3,5‐bis(tert‐butyl)pyrazole ( 3 )). The Pt–Pt distance in the complexes, which decreases in the order 1 > 2 > 3 , solely determines the electroluminescence color of the organic light‐emitting diodes (OLEDs). Blue OLEDs fabricated using 8 % 1 doped into a 3,5‐bis(N‐carbazolyl)benzene (mCP) host have a quantum efficiency of 4.3 % at 120 Cd m–2, a brightness of 3900 Cd m–2 at 12 V, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.11, 0.24). Green and red OLEDs fabricated with 2 and 3 , respectively, also give high quantum efficiencies (~ 6.7 %), with CIE coordinates of (0.31, 0.63) and (0.59, 0.46), respectively. The current‐density–voltage characteristics of devices made using dopants 2 and 3 indicate that hole trapping is enhanced by short Pt–Pt distances (< 3.1 Å). Blue electrophosphorescence is achieved by taking advantage of the binuclear molecular geometry in order to suppress dopant intermolecular interactions. No evidence of low‐energy emission from aggregate states is observed in OLEDs made with 50 % 1 doped into mCP. OLEDs made using 100 % 1 as an emissive layer display red luminescence, which is believed to originate from distorted complexes with compressed Pt–Pt separations located in defect sites within the neat film. White OLEDs are fabricated using 1 and 3 in three different device architectures, either with one or two dopants in dual emissive layers or both dopants in a single emissive layer. All the white OLEDs have high quantum efficiency (~ 5 %) and brightness (~ 600 Cd m–2 at 10 V).  相似文献   
4.
Grapevine powdery mildew ( Erysiphe necator) affects grape yield and fruit quality worldwide. Managers of conventional vineyards rely mainly on synthetic fungicides and sulfur to control powdery mildew, while in organic vineyards sulfur is the main control agent, often in rotation with canola-based oils, bicarbonates and biological control agents. The efficacy of those materials has not been evaluated critically under field conditions in Australia. Accordingly, a range of materials showing most promise in previous greenhouse trials (Crisp et al. 2006 Australian Journal of Grape and Wine Research 12 , pp. 192–202) were assessed via field trials in commercial vineyards. Applications of either milk or whey (alone, or mixed with a canola oil-based product), as well as applications of potassium bicarbonate (commercial formulation), all reduced the severity of powdery mildew compared with untreated vines. Eight applications of a 1:10 dilution of milk, 45 g/L whey powder or programs comprising rotations of potassium bicarbonate plus oil and whey, applied at 10–14 day intervals, reduced the severity of powdery mildew to levels not significantly different from that on vines sprayed with sulfur (wettable powder, 3–6 g/L). However, the relative control of powdery mildew by the test materials in field trials was dependent on the susceptibility of the grapevine cultivar and the extent of spray coverage achieved. In vineyards where highly susceptible cultivars were planted, and spray coverage was compromised, the resultant control of powdery mildew was reduced; and sometimes to commercially unacceptable levels.  相似文献   
5.
A thermodynamic modeling of GaN was carried out to describe the thermodynamic behavior of native defects, dopants, and carriers (free electrons and holes) in GaN semiconductors. The compound energy model (CEM) was used. An unintentionally doped GaN was taken as an example. Oxygen was introduced into the model as the unintentionally doped impurity, according to the practical experimental phenomena. The energies of component compounds in the model were defined based on the results of the ab initio calculations and adjusted to fit experimental data. The thermodynamic properties of the defects and the oxygen doped were calculated to show the facility of the model.  相似文献   
6.
文章综述了锂离子电池有机电解液成膜添加剂的作用原理,具体介绍了CO2、SO2、VC化合物、卤化物、有机铜盐以及马来酐等添加剂的研究现状。  相似文献   
7.
8.
Inorganic–organic hybrid materials are attracting a strong scientific interest mainly for their outstanding inherent mechanical and thermal properties, which can be traced back to the intimate coupling of both inorganic and organic components. By carefully choosing the experimental parameters used for their synthesis, chemically and thermally stable acrylate-based hybrid material embedding the zirconium oxocluster Zr4O4(OMc)12, where OMcCH2C(CH3)C(O)O, can be deposited as UV-cured films on aluminium alloys.

In particular, the molar ratios between the oxocluster and the monomer, the polymerisation time, the amount of photo-initiator and the deposition conditions, by using an home-made spray-coating equipment, were optimised in order to obtain the best performing layers in terms of transparency and hardness to coat aluminium alloy (AA1050, AA6060 and AA2024) sheets. Furthermore, it was also evaluated whether the hybrid coatings behave as barrier to corrosion.

Several coated samples were prepared and characterised. Environmental scanning electronic microscopy (ESEM) and scratch test were used to investigate the morphology of the films and to evaluate their scratch resistance, respectively. Electrochemical impedance spectroscopy (EIS) was performed in order to evaluate if the coatings actually protect the metallic substrate from corrosion.

In order to measure shear storage modulus (G′) and loss modulus (G″) of the materials used for coatings, bulk samples were also obtained by UV-curing of the precursors solution. Dynamical mechanical thermal analysis (DMTA) was performed in shear mode on cured disks of both the hybrid materials and pristine polymer for comparison. The values of Tg were read off as the temperatures of peak of loss modulus. The length and mass of all the samples were measured before and after the DMTA analysis, so that the shrinkage of the materials in that temperature range was exactly evaluated.  相似文献   

9.
We report on a single‐layer organic memory device made of poly(N‐vinylcarbazole) embedded between an Al electrode and ITO modified with Ag nanodots (Ag‐NDs). Devices exhibit high ON/OFF switching ratios of 104. This level of performance could be achieved by modifying the ITO electrodes with some Ag‐NDs that act as trapping sites, reducing the current in the OFF state. Temperature dependence of the electrical characteristics suggest that the current of the low‐resistance state can be attributed to Schottky charge tunnelling through low‐resistance pathways of Al particles in the polymer layer and that the high‐resistance state can be controlled by charge trapping by the Al particles and Ag‐NDs.  相似文献   
10.
BACKGROUND: In the framework of biological processes used for waste gas treatment, the impact of the inoculum size on the start‐up performance needs to be better evaluated. Moreover, only a few studies have investigated the behaviour of elimination capacity and biomass viability in a two‐phase partitioning bioreactor (TPPB) used for waste gas treatment. Lastly, the impact of ethanol as a co‐substrate remains misunderstood. RESULTS: Firstly, no benefit of inoculation with a high cellular density (>1.5 g L?1) was observed in terms of start‐up performance. Secondly, the TPPB was monitored for 38 days to characterise its behaviour under several operational conditions. The removal efficiency remained above 63% for an inlet concentration of 7 g isopropylbenzene (IPB) m?3 and at some time points reached 92% during an intermittent loading phase (10 h day?1), corresponding to a mean elimination capacity of 4 × 10?3 g L?1 min?1 (240 g m?3 h?1) for a mean IPB inlet load of 6.19 × 10?3 g L?1 min?1 (390 g m?3 h?1). Under continuous IPB loading, the performance of the TPPB declined, but the period of biomass acclimatisation to this operational condition was shorter than 5 days. The biomass grew to approximately 10 g L?1 but the cellular viability changed greatly during the experiment, suggesting an endorespiration phenomenon in the bioreactor. It was also shown that simultaneous degradation of IPB and ethanol occurred, suggesting that ethanol improves the biodegradation process without causing oxygen depletion. CONCLUSION: A water/silicone oil TPPB with ethanol as co‐substrate allowed the removal of a high inlet load of IPB during an experiment lasting 38 days. Copyright © 2008 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号