首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   10篇
数理化   14篇
  2020年   1篇
  2014年   2篇
  2011年   1篇
  2010年   6篇
  2007年   3篇
  2006年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The Insight-Hard X-ray Modulation Telescope(Insight-HXMT) is a broadband X-ray and γ-ray(1-3000 ke V) astronomy satellite. One of its three main telescopes is the High Energy X-ray telescope(HE). The main detector plane of HE comprises 18 Na I(Tl)/Cs I(Na) phoswich detectors, where Na I(Tl) is used as the primary detector to measure ~ 20-250 ke V photons incident from the field of view(FOV) defined by collimators, and Cs I(Na) is used as the active shielding detector to Na I(Tl) by pulse shape discrimination. Additionally, Cs I(Na) is used as an omnidirectional γ-ray monitor. The HE collimators have a diverse FOV,i.e. 1.1°×5.7°(15 units), 5.7°×5.7°(2 units), and blocked(1 unit). Therefore, the combined FOV of HE is approximately5.7°×5.7°. Each HE detector has a diameter of 190 mm resulting in a total geometrical area of approximately 5100 cm2, and the energy resolution is ~15% at 60 ke V. For each recorded X-ray event by HE, the timing accuracy is less than 10 μs and the deadtime is less than 10 μs. HE is used for observing spectra and temporal variability of X-ray sources in the 20-250 ke V band either by pointing observations for known sources or scanning observations to unveil new sources. Additionally, HE is used for monitoring the γ-ray burst in 0.2-3 Me V band. This paper not only presents the design and performance of HE instruments but also reports results of the on-ground calibration experiments.  相似文献   
2.
直接解调成像的快速算法   总被引:1,自引:0,他引:1  
沈宗俊  周建锋 《中国物理 C》2007,31(11):1016-1021
直接解调方法(Direct Demodulate Method, DD)中运用的最多的迭代方法是Richardson-Lucy (RL)迭代. RL迭代的公式可以改写成矩阵形式, 其中包含了主要计算量的两次矩阵乘法在点扩展函数满足平移不变性的情况下可以写成卷积的形式, 而卷积可以使用快速傅里叶变换(Fast Fourier Transform, FFT)做快速计算. 详细介绍了上述过程, 并将该方法应用到了硬X射线调制望远镜(Hard X-ray Modulate Telescope,HXMT)的DD成像中, 通过理论的和模拟的计算对比了优化前后DD方法对计算资源的开销.  相似文献   
3.
A thermal control system (TCS) based on the resistance heating method is designed for the High Energy Detector (HED) on the Hard X-ray Modulation Telescope (HXMT). The ground-based experiments of the active thermal control for the HED with the TCS are performed in the ambient temperature range from -15 to 20 ℃ by utilizing the pulse width to monitor the interior temperature of a NaI(Tl) crystal. Experimental results show that the NaI(Tl) crystal's interior temperature is from 17.4 to 21.7 ℃ when the temperature of the PMT shell is controlled within (20±3) ℃ with the TCS in the interesting temperature range, and the energy resolution of the HED is maintained at 16.2% @ 122 keV, only a little worse than that of 16.0% obtained at 20 ℃. The average power consumption of the TCS for the HED with a low-emissivity shell is about 4.3 W, which is consistent with the simulation.  相似文献   
4.
The Low Energy X-ray Instrument (LE) of the Hard X-ray Modulation Telescope (HXMT) uses the Swept Charge Device (SCD) to detect the X-rays in 1-15 keV. The performance of SCD is vulnerable to temperature. We analyzed the thermal condition of LE at different satellite working attitudes with the Finite Element Method (FEM). It is shown that the angle between the sunlight and the normal line of the barrier should be less them 26°, to keep the SCD detectors working in the required temperature range, i.e. -40 ℃ to -80 ℃. We find that the performance of LE is very stable in this temperature range, with a typical energy resolution of 160 eV at 5.9 keV.  相似文献   
5.
Charged Coupled Devices(CCDs) have been successfully used in several low energy X-ray astronomical satellites over the past two decades. Their high energy resolution and high spatial resolution make them a perfect tool for low energy astronomy, such as observing the formation of galaxy clusters and the environment around black holes. The Low Energy X-ray Telescope(LE) group is developing a Swept Charge Device(SCD) for the Hard Xray Modulation Telescope(HXMT) satellite. A SCD is a special low energy X-ray CCD, which can be read out a thousand times faster than traditional CCDs, simultaneously keeping excellent energy resolution. A test method for measuring the charge transfer efficiency(CTE) of a prototype SCD has been set up. Studies of the charge transfer inefficiency(CTI) with a proton-irradiated SCD have been performed at a range of operating temperatures. The SCD is irradiated by 3×108cm-210 MeV protons.  相似文献   
6.
HXMT主探测器磁屏蔽设计与实验结果   总被引:1,自引:0,他引:1  
硬X射线调制望远镜(HXMT)致力于实现硬X射线的高灵敏度巡天观测, 描绘硬X射线天图, 并对特殊天体作高灵敏度连续观测, 得到其辐射的能谱和时间变化等. 为了减少空间磁场对观测的影响, 确保本底计数的稳定性和能谱测量的精度, 我们用坡莫合金制成的磁屏蔽罩对HXMT主探测器的光电倍增管(PMT)进行了磁屏蔽处理. 实测表明, 在地面地磁场环境下PMT的最大增益变化幅度为6%; 它与自动增益控制系统配合能使在轨PMT增益变化幅度小于1%, 探测器本底计数变化小于0.1%.  相似文献   
7.
A prototype of the ME readout electronics onboard the Hard X-ray Modulate Telescope (HXMT) satellite is developed. Application Specific Integrated Chip (ASIC) is used to construct the front end electronics due to a large number of detectors. Field Programmable Gate Array (FPGA) is connected to the ASIC as a state machine controller and data FIFO in the DAQ system. A USB board is designed to communicate between the DAQ system and the computer. The design goals and features, the operation of the system and the preliminary performance of the prototype are described. The testing results show that the design goals of the prototype system have been achieved.  相似文献   
8.
The Hard X-ray Modulation Telescope (HXMT) is an X-ray astronomy satellite consisting of three slat-collimated instruments, the High Energy X-ray Instrument (HE), the Medium Energy X-ray Instrument (ME), and the Low Energy X-ray Instrument (LE). HXMT will carry out an all sky survey and make pointed observations in the 1-250 keV energy band. In order to get the source and background fluxes simultaneously in the pointed observations, two methods, i.e., the combined field of view (FOV) method and the off-axis pointing method are proposed in this paper. Comprehensive analyses of the sensitivities of the three instruments by using these two methods are presented, respectively. It is found that the off-axis pointing method has a higher sensitivity for HE and ME but a lower sensitivity for LE. Since the axes of the three instruments are aligned along the same direction, the off-axis pointing method is recommended as the main method in the pointed observation for HXMT; the combined FOV method can be used when LE is the most relevant instrument in order to satisfy the scientific objective of the observation.  相似文献   
9.
The Low Energy X-ray Instrument (LE) of the Hard X-ray Modulation Telescope (HXMT) uses the Swept Charge Device (SCD) to detect the X-rays in 1-15 keV. The performance of SCD is vulnerable to temperature. We analyzed the thermal condition of LE at different satellite working attitudes with the Finite Element Method (FEM). It is shown that the angle between the sunlight and the normal line of the barrier should be less them 26°, to keep the SCD detectors working in the required temperature range, i.e. -40 ℃ to -80 ℃. We find that the performance of LE is very stable in this temperature range, with a typical energy resolution of 160 eV at 5.9 keV.  相似文献   
10.
The Low Energy X-ray Telescope is one of the main payloads on the Hard X-ray Modulation Telescope satellite.Swept charge devices(SCDs)are selected as detectors for the Low Energy X-ray Telescope.As SCDs are sensitive to proton irradiation,irradiation tests were carried out on the HI-13 accelerator at the China Institute of Atomic Energy.The beam energy was measured to be 10 MeV at the SCD.The proton fluence delivered to the SCD was 3×108protons/cm2over two hours.By comparing the performance before and after irradiation,it is concluded that proton irradiation affects both the dark current and the charge transfer inefficiency of the SCD.The energy resolution of the proton-irradiated SCD is 212 eV@5.9 keV at-60?C,while it before irradiated is 134 eV.Moreover,better performance can be reached by lowering the operating temperature of the SCD in orbit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号