首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   25篇
  国内免费   2篇
数理化   218篇
  2013年   1篇
  2010年   6篇
  2009年   32篇
  2008年   43篇
  2007年   28篇
  2006年   24篇
  2005年   6篇
  2004年   4篇
  2003年   14篇
  2002年   10篇
  2001年   5篇
  2000年   5篇
  1999年   7篇
  1998年   10篇
  1997年   2篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
1.
The time recovery of the spectroscopic capabilities of CdZnTe and CdTe detectors, irradiated with increasing doses of high- and low-energy neutrons, as well as electrons, has been investigated by studying their spectroscopic behavior at different photon energies using leakage current measurements and PICTS (photo-induced current transient spectroscopy) analysis. The detectors were stored at room temperature for up to one year to study the time evolution of their spectroscopic performance and to correlate it with the presence of defective states in the material. We have observed a clear improvement in the material’s detection properties with time, though only in those detectors which have not been severely degraded by the irradiation. The recovery can be associated with a decrease in the concentration of some defective states, thus allowing the assessment of the crucial role these play in determining the charge collection processes in the material and its spectroscopic capabilities. Received: 1 August 2001 / Accepted: 3 August 2001 / Published online: 20 December 2001  相似文献   
2.
The oxygen induced faceting of the macroscopic W[1 1 1] tip has been studied for oxygen exposures in the range 0.5-31 L and annealing temperatures 800-1800 K using the field ion microscopy (FIM) technique. After annealing at temperatures lower than 800 K, higher than 1850 K or for exposures lower than 0.5 L faceting was not observed. For exposures 0.5-1.9 L and annealing temperatures 800-1600 K well developed {1 1 2} facets with sharp edges formed. For exposures higher than 2.0 L edges of the {1 1 2} facets were broadening and disappearing, what has been attributed to the formation of three-dimensional tungsten oxides. The oxides could be easily removed by annealing the tip at 1700 K, what leads to formation of sharp facet edges. On the basis of these results a modified procedure of the ultrasharp tip fabrication has been proposed.  相似文献   
3.
Inductively coupled plasma (ICP) etching has been used primarily on compound semiconductors. There are however compelling reasons to study the effects of ICP etching on Ge. Pd Schottky barrier diodes (SBDs) were resistively evaporated onto Ge (1 1 1) that was ICP etched at a rate of 60 Å per minute for three or ten minute intervals. Although plasma cleaning is known to introduce defects that were observed with DLTS, the diodes exhibited excellent current-voltage characteristics when cooled down to 80 K. Current-temperature (IT) scans that were recorded from 20 K up to 300 K after cooling under reverse bias showed no effect of recombination/generation (RG). On the other hand, IT scans that were recorded after cooling under zero or forward bias clearly exhibited RG effects in the 100-240 K temperature range. This effect was found to be completely reversible. In addition, ICP etching leads to superior devices when compared to devices manufactured by RF sputter deposition.  相似文献   
4.
We present a theory of the pair distribution function g(z) and many-body effective electron-electron interaction for the one dimensional (1D) electron liquid. Our approach involves the solution of a zero-energy scattering Schrödinger equation for where we implemented the Fermi hypernetted-chain approximation including the elementary diagram corrections. We present numerical results for g(z) and the static structure factor S(k) and obtain good agreement with data from diffusion Monte Carlo studies of the 1D system. We calculate the correlation energy and charge excitation spectrum over an extensive range of electron density. Furthermore, we obtain the static correlations in good qualitative agreement with those calculated for the Luttinger liquid model with long-range interactions.  相似文献   
5.
Dispersion relations of surface plasmon polaritons (SPPs) in sandwiched optical systems are studied. The system is actually a kind of SPP waveguides, with two kinds of single negative material (SNG) as core and cladding layers, respectively. Since both TM and TE polarized SPPs can be excited in the structure, the dispersion of SPPs becomes more abundant and leads to colorful nonlinear opticM properties. The authors demonstrate the effective phase-matched second and third-harmonic generation (SHG, THG) assisted by the coupled SPPs. A cascaded second-order nonlinear process can Mso be achieved in the structure when the thickness of the core layer is properly selected, leading to the simultaneous SHG and THG. Further investigations show that much easier phase-matching can be fulfilled in the SNG waveguide array. Our results would be of potential use for surface-enhanced frequency conversion device such as light emitters or lasers.  相似文献   
6.
We introduce polar substituents such as F, C1, Br into pentacene to enhance the dissolubility in common organic solvents while retaining the high charge-carrier mobilities of pentacene. Geometric structures, dipole moments, frontier molecule orbits, ionization potentials and electron affinities, as well as reorganization energies of those molecules, and of pentacene for comparison, are successively calculated by density functional theory. The results indicate that haiopentacenes have rather small reorganization energies (〈 0.2 eV), and when the substituents are in position 2 or positions 2 and 9, they are polarity molecules. Thus we conjecture that they can easily be dissolved in common organic solvents, and are promising candidates for organic semiconductors.  相似文献   
7.
We propose a novel scenario for the electronic state in the manganese perovskites. We argue that, at low temperatures and within the ferromagnetic state, the physics of these colossal magnetoresistance compounds may be characterized by a correlated metallic state near a metal insulator transition where the orbital degrees of freedom play the main role. This follows from the observation that a two-band degenerate Hubbard model under a strong magnetic field can be mapped onto a para-orbital single band model. We solve the model numerically using the quantum Monte-Carlo technique within a dynamical mean field theory which is exact in the limit of large lattice connectivity. We argue that the proposed scenario may allow for the qualitative interpretation of a variety of experiments which were also observed in other (early) transition metal oxides. Received: 3 October 1997 / Revised: 9 December 1997 / Accepted: 12 January 1998  相似文献   
8.
The three-dimensional spin-1 Ising superlattice consisting of two different ferromagnetic materials with two different crystal fields Δ1Δ1 and Δ2Δ2 is considered in the mean field approximation. The phase diagrams are considered in the (t,d2t,d2) plane for different ranges of variation of d1(t=T/J,d1=Δ1/Jd1(t=T/J,d1=Δ1/J, d2=Δ2/Jd2=Δ2/J are the reduced temperature and crystal fields respectively). The phase diagrams exhibit a variety of multicritical points and reentrant and double reentrant behaviours. They are found to depend qualitatively and/or quantitatively on the thicknesses of the materials in a supercell. This has direct consequences on the nature of the magnetic states of superlattices with different thicknesses.  相似文献   
9.
Low-density networks of single-wall carbon nanotubes have been modified by palladium nanoparticles using an electrochemical method. A major advantage of this approach is that it allows for selective metal deposition on the electrically contacted nanotubes, whereas the remaining substrate surface and the non-contacted tubes remain essentially unaffected. The Pd-decorated networks function as effective hydrogen sensors enabling the detection of hydrogen concentrations as low as 10 ppm at room temperature. The electrochemical metal deposition scheme is promising for the development of sensor arrays suitable for analysing gas mixtures.  相似文献   
10.
We analyse the transport properties of a coupled double quantum dot (DQD) device with one of the dots (QD1) coupled to metallic leads and the other (QD2) embedded in an Aharonov-Bhom (A-B) ring by means of the slaveboson mean-field theory. It is found that in this system, the Kondo resonance and the Fano interference exist simultaneously, the enhancing Kondo effect and the increasing hopping of the QD2-Ring destroy the localized electron state in the QD2 for the QD1-leads, and accordingly, the Fano interference between the DQD-leads and the QD1-leads are suppressed. Under some conditions, the Fano interference can be quenched fully and the single Kondo resonance of the QD1-leads comes into being. Moreover, when the magnetic flux of the A-B ring is zero, the influence of the parity of the A-B ring on the transport properties is very weak, but this influence becomes more obvious with non-zero magnetic flux. Thus this model may be a candidate for future device applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号