首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   16篇
  国内免费   1篇
数理化   84篇
  2024年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2016年   4篇
  2015年   4篇
  2014年   8篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   11篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
排序方式: 共有84条查询结果,搜索用时 16 毫秒
1.
    
Ultracold Fermi molecules lying in 2D square optical lattices bilayers with its dipole moment perpendicularly aligned to the layers, having interlayer finite range s‐wave interactions, are shown to form superfluid phases, both, in the Bardeen, Cooper and Schrieffer (BCS) regime of Cooper pairs, and in the condensate regime of bound dimeric molecules. We demonstrate this result using a functional integral scheme within the Ginzburg‐Landau theory. For the deep Berezinskii‐Kosterlitz‐Thouless (BKT) phase transition, we predict critical temperatures around 5nK and 20nK for 23Na40K and OH molecules, which are within reach of current experiments [J. W. Park, S. Will and M. Zwierlein, Phys. Rev. Lett. 114 , 205302 (2015)].

  相似文献   

2.
超流最关键的物理量就是临界速度,美国MIT(麻省理工学院)实验组用激光来回扫描凝聚体的方法测出BEC超流体的临界速度,但是与Bogolyubov的理论得出来的值相比小得多,P.O.Fedichev考虑凝聚体处在外势中和各相异性的特点,理论计算的结果与MIT(麻省理工学院)实验组测量的实验值接近,但还是有一定的差距。考虑到非凝聚粒子的影响,发现MIT组测得的实验值并不是临界速度,而是准粒子的速度,实际临界速度比测得的速度要大。估算了准粒子的有效质量,并用碰撞模型对MIT组测得的实验值进行了修正。Jun Suzuki考虑了非凝聚态粒子的影响,计算出的临界速度的理论值与修正后的MIT组的实验结果相符。  相似文献   
3.
The spatial structure of a Bose-Einstein Condensate (BEC) loaded into an optical lattice potential is investigated. We suggest a method for generating chaos in BEC by modulating periodic signals to convert the regular states into chaotic states. The maximal Lyapunov exponent is calculated as a function of modulation intensity and modulation frequency respectively, and the chaotic orbits associated with the positive Lyapunov exponents.   相似文献   
4.
The spatial structure of a Bose-Einstein condensate (BEC) loaded into an optical lattice potential is investigated and the spatially chaotic distributions of the condensates are revealed. A method of chaos control with linear feedback is presented in this paper. By using the method, we propose a scheme of controlling chaotic behavior in a BEC with atomic mirrors. The results of the computer simulation show that controlling the chaos into the stable states could be realized by adjusting the coefficient of feedback only if the maximum Lyapunov exponent of the system is negative.  相似文献   
5.
6.
We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases.A Kadomtsev-Petviashvili I(KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen-Cooper-Schrieffer(BCS) regime,Bose-Einstein condensate(BEC) regime,and unitarity regime.Onelump solution as well as one-line soliton solutions for the KPI equation are obtained,and two-line soliton solutions with the same amplitude are also studied in the limited cases.The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.  相似文献   
7.
一个带阻尼项Josephson振动的半经典模型   总被引:2,自引:0,他引:2  
在双势阱模型的基础上考虑了Josephson流与凝聚体的相互作用而引起的阻尼效应,得出相对粒子数Z(t)的表达式,并用一个简单的碰撞模型得出Josephson振动的振幅和能量及随时间呈指数衰减,以及凝聚体的质量越大,衰减越慢。  相似文献   
8.
识别物质的相变是物理学研究中一个重要问题.本文采用了一种混淆标签方案的卷积神经网络算法来识别两分量玻色-爱因斯坦凝聚(BEC)中量子相变点,通过计算神经网络输出的准确率,得到W型性能曲线,此性能曲线中间的极大值对应着量子相变的临界点.研究结果表明,深度学习得到的量子相变点与解析计算值吻合度较高.此混淆标签方案的深度学习研究方法可以应用到存在两种相的相变体系.  相似文献   
9.
针对近零温度下玻色-爱因斯坦凝聚态的特点,建立了复合原子表示模型.提出了复合原子的概念,研究发现复合原子具有一定的零点半径与结合能,得出了相应的表达式.认为该物态作为一个宏观量子态的说法具有相对性,应该据研究角度而定.同时,给出了二个分离的玻色-爱因斯坦凝聚态之间产生1/R型作用势的几种情况,为同类实验提供了理论依据.  相似文献   
10.
We present a standard field theoretical derivation of the dynamic density and spin linear response functions of a dilute superfluid Fermi gas in the BCS–BEC crossover in both three and two dimensions. The derivation of the response functions is based on the elegant functional path integral approach which allows us to calculate the density–density and spin–spin correlation functions by introducing the external sources for the density and the spin density. Since the generating functional cannot be evaluated exactly, we consider two gapless approximations which ensure a gapless collective mode (Goldstone mode) in the superfluid state: the BCS–Leggett mean-field theory and the Gaussian-pair-fluctuation (GPF) theory. In the mean-field theory, our results of the response functions agree with the known results from the random phase approximation. We further consider the pair fluctuation effects and establish a theoretical framework for the dynamic responses within the GPF theory. We show that the GPF response theory naturally recovers three kinds of famous diagrammatic contributions: the Self-Energy contribution, the Aslamazov–Lakin contribution, and the Maki–Thompson contribution. We also show that unlike the equilibrium state, in evaluating the response functions, the linear (first-order) terms in the external sources as well as the induced order parameter perturbations should be treated carefully. In the superfluid state, there is an additional order parameter contribution which ensures that in the static and long wavelength limit, the density response function recovers the result of the compressibility (compressibility sum rule). We expect that the ff-sum rule is manifested by the full number equation which includes the contribution from the Gaussian pair fluctuations. The dynamic density and spin response functions in the normal phase (above the superfluid critical temperature) are also derived within the Nozières–Schmitt–Rink (NSR) theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号