首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   46篇
  国内免费   78篇
地球科学   439篇
  2024年   6篇
  2023年   8篇
  2022年   14篇
  2021年   19篇
  2020年   18篇
  2019年   15篇
  2018年   11篇
  2017年   12篇
  2016年   12篇
  2015年   15篇
  2014年   13篇
  2013年   33篇
  2012年   15篇
  2011年   12篇
  2010年   16篇
  2009年   12篇
  2008年   14篇
  2007年   22篇
  2006年   26篇
  2005年   16篇
  2004年   13篇
  2003年   16篇
  2002年   11篇
  2001年   9篇
  2000年   13篇
  1999年   14篇
  1998年   11篇
  1997年   7篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有439条查询结果,搜索用时 0 毫秒
1.
Through a systematic observation of water level and temperature, and a comprehensive analysis of the data on major/trace elements, nitrite, hydrogen-oxygen isotopes, the conclusion has been drawn that there are two relatively independent groundwater systems (cool water and hot water), and the geochemical indicators of hot/cool waters are described. The cool water system is relatively enriched in Ca2 , Mg2 and HCO3-. Its TDS is relatively low, about 1400–1800 mg/L. The hot water system is relatively enriched in K , Na , Cl- and SO42-. Its TDS is relatively high, about 2200–2300 mg/L. The cool water system is enriched in Ba, Ga, Cd, and the hot water system is enriched in B, Ti, Cr, Ni, Cu, Mo, Rb, and Cs, relatively. Especially, the contents of Rb and Cs in the hot water system are more than five times as high as those in the cool water system. The NO3- contents of cool water discharged from the gold mine are relatively high, and those of hot water are extremely low. The δD and δ18O values follow an increasing order of surface water>mine cool water>mine hot water. The cool water comes mainly from the lateral supply of phreatic water, while the hot water comes mainly from the vertical supply of deeply circulating structure-fracture water. The ratio of cool water over hot water was estimated to be about 1:1 by a water quality model..  相似文献   
2.
喀斯特适生植物固碳增汇策略   总被引:5,自引:1,他引:4  
吴沿友 《中国岩溶》2011,30(4):461-465
通过分析喀斯特地区的土壤化学性质,明确了喀斯特地区植物的固碳增汇的限制因素为岩溶干旱、低营养、高pH、高重碳酸盐等.通过对喀斯特适生植物和非适生植物的无机碳源、氮源的利用以及对低营养的响应差异分析,总结出了喀斯特适生植物交替、高效利用碳酸氢根离子作碳源的开源固碳增汇策略,以较低的营养成本获取较高的光合固碳能力的低成本倍增固碳增汇策略,以及掠夺式吸收限制性的铵态氮和补偿式吸收硝态氮来实现固碳增汇作用的以氮增汇策略等;提出了喀斯特适生植物固碳增汇能力的利用途径,可最大限度挖掘出喀斯特地区植物的固碳增汇潜能.  相似文献   
3.
浒苔(Ulva prolifera)引起的大规模绿潮起源于黄海南部,在向北迁移过程中生物量迅速扩增,在海州湾附近(35°N左右)迅速增加达到峰值.在绿潮漂浮迁移过程中,海水表层温度、溶解无机氮(dissolved inorganic nitrogen,DIN)和磷酸盐(PO43--P)变化显著.本文以迁移过程中的浒苔为...  相似文献   
4.
Nitrogen cycle is an important bio-geochemical process in the environment. Measurement of the total nitrogen (TN) is a routine experiment in agriculture, biology and environmental sciences. The Kjeldahl method (KM) and elemental analyzer method (EA) are both commonly used to determine TN. Total nitrogen by EA is the sum of nitrate (NO3), nitrite (NO2), organic nitrogen and ammonia. Total nitrogen by KM (TKN) is made up of both organic nitrogen and ammonia. A comparative study focused on the two methods is conducted by analysis of TN in 97 samples from the sediment sequence of Gouchi, a salt lake in North China. KM presents a higher degree of accuracy than EA with a standard deviation of 0.007 vs. 0.024. With the presence of nitrate and/or nitrite nitrogen, however, measurement by KM is considerably lower than that by EA. Therefore, for samples from lake sediment sequences or soils in North China, KM is inapplicable to determining TN because of usually high contents of nitrous salt. Despite the inconsistency, use of both methods to the same samples makes sense in reconstructions of climatic and environmental changes from lake sediments. In Lake Gouchi, the contents of nitrate and nitrite nitrogen vary from 1.40% in the lower part of the sequence to 14.77% in the uppermost part, suggesting a gradual evolution process from a fresh water lake to the present-day salt lake.  相似文献   
5.
海洋生态系统中,浮游植物和细菌之间的相互作用是影响营养盐供应和再生、海洋初级生产力和生物地球化学循环的基本生态关系.为研究营养盐、浮游植物和细菌之间的关系,在实验室内培养条件下,通过改变氮源的形态(硝态氮和铵态氮)和浓度,研究海洋浮游植物三角褐指藻(Phaeodactylum tricornutum)的藻际细菌在不同营...  相似文献   
6.
两种海洋微藻硝酸还原酶活性测定方法的比较研究   总被引:1,自引:0,他引:1  
对6种常见海洋微藻的硝酸还原酶活性测定方法进行了初步研究。确立了离体法和活体法的提取(振荡)时间及酶促反应时间,分别为:5 min,30 min(离体法)和6 min,10 min(活体法),并对2种方法进行了对比。结果表明:在本文条件下,离体法较活体法更适于进行塔玛亚历山大藻(Alexandrium tamarense)、强壮前沟藻(Amphidinium carterae)、中肋骨条藻(Skeletonema costatum)、新月菱形藻(Nitzchia closterium)和旋链角毛藻(Chaetoceros curvisetus)的硝酸还原酶活性的测定;活体法更适于东海原甲藻(Prorocentrum donghainase)硝酸还原酶活性的测定。  相似文献   
7.
三峡库区梁滩河流域水化学与硝酸盐污染   总被引:8,自引:1,他引:8  
运用水化学和水质分析技术,测定了三峡库区梁滩河流域地表水体和地下水体中的水化学组成和硝酸盐氮含量,揭示了梁滩河流域地表水和地下水水体的水化学组成和硝酸盐污染的空间分布规律、来源及循环过程。结果表明:梁滩河流域地表水的硝酸盐污染表现为沿着地表径流从上游到下游呈现出加重的趋势,这种污染趋势与养殖业、生活和工农业废污水的沿程直接排放有着直接关系;而地下水硝酸盐污染呈现出流域上游和下游较轻、而中游东侧支流区域较重的空间分布特征,这种空间分布特征与地表水体中氨氮和有机氮的含量、地表水与地下水之间的补给排泄关系、厚层土壤包气带的存在以及土地利用状况等因素有着密切的关系。  相似文献   
8.
氮磷营养盐对中肋骨条藻生长及硝酸还原酶活性的影响   总被引:3,自引:0,他引:3  
通过实验室培养,在不同氮磷浓度及氮磷比率的营养条件下,对中肋骨条藻(Skeletonema costatum)的生长及藻细胞硝酸还原酶的活性进行研究。实验结果表明,中肋骨条藻属于营养型藻类,氮磷营养盐的添加,极大地促进了藻细胞的增殖。在接种后的第4~5天,各培养组藻密度达到最大值并与对照组形成极显著性差异(P〈0.01)。实验进一步发现,环境中的氮、磷浓度及氮磷比率都会影响中肋骨条藻的生长及藻细胞硝酸还原酶活性(NRA)。此外,在各培养组中,中肋骨条藻硝酸还原酶活性的最大值(NRAmax)均出现在指数生长期(接藻后第1,2天),早于最大藻密度的出现时间(第4,5天),这表明藻对营养盐的同化速率与生长速率并不一致,后者存在一定的滞后效应。在本实验条件下,中肋骨条藻的硝酸还原酶活性存在一定的阈值。  相似文献   
9.
针对复杂硝酸铵水盐体系溶解度的测定,传统分析方法操作步骤繁琐,且试剂较贵,引入一种简单准确的分析方法,即热分解法,对LiNO3-KNO3-NH4NO3-H2O体系和NaNO3-KNO3-NH4NO3-H2O体系中硝酸铵和水的含量进行精确分析。结果表明,热分解温度控制在230~240℃,若控制样品质量为1.5 g,分解时间不低于36 h,能将LiNO3-KNO3-NH4NO3-H2O体系中的硝酸铵和水彻底分解,且随着样品中硝酸铵含量增加,热分解时间也将延长,分析相对误差能控制在0.2%以内。针对复杂NaNO3-KNO3-NH4NO3-H2O体系,热分解温度控制在230~255℃,若控制样品质量为1.5 g,分解时间不少于44 h,且随着样品中硝酸铵含量的增加,相应延长热分解时间,能将复杂NaNO3-KNO3-NH4NO3-H2O体系中的硝酸铵和水彻底分解,分析相对误差能控制在0.2%以内。  相似文献   
10.
在槽式太阳能热发电领域,硝酸镁基熔盐逐渐引起关注。通过六水硝酸镁煅烧法制备无水硝酸镁,采用拉曼、DSC与XRD表征脱水产物,系统研究了环境压力、脱水温度与时间对六水硝酸镁脱水和水解的影响。结果表明,六水硝酸镁在煅烧过程中水解为碱式硝酸镁Mg_3(OH)_4(NO_3)_2,在水溶液中进一步分解为Mg(OH)_2。随着煅烧温度和时间的增加,脱水产物中的含水量逐渐减少,同时水解产物Mg_3(OH)_4(NO_3)_2含量逐渐增加。真空环境下煅烧,可显著降低硝酸镁的水解反应。六水硝酸镁在真空环境下230℃煅烧1.5 h,所制备的无水硝酸镁中水解产物含量为3.63%。制备的硝酸镁可进一步用于硝酸镁基熔盐的研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号