首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   84篇
  国内免费   9篇
工业技术   627篇
  2024年   5篇
  2023年   34篇
  2022年   67篇
  2021年   126篇
  2020年   84篇
  2019年   59篇
  2018年   26篇
  2017年   37篇
  2016年   20篇
  2015年   12篇
  2014年   29篇
  2013年   29篇
  2012年   30篇
  2011年   18篇
  2010年   13篇
  2009年   10篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有627条查询结果,搜索用时 0 毫秒
1.
Arc Spray Nanoparticle Synthesis System (ASNSS) has been used to prepare the silver nanofluids in this study. The metal electrodes under the electrical discharge will melt and evaporate rapidly and condense to form the nanoparticles in the dielectric fluid at lower temperature and produce the suspended nanoparticle fluid. Thus, the mechanism of the ASNSS process is superheating the electrodes by plasma to form metallic nuclei and supercooling these nuclei by dielectric liquid to produce nanofluid. This study considers the different controlling parameters such as discharge current,discharge voltage, pulse-duration time, electrode diameter, and the temperature of dielectric liquid. The optimally operated parameters can be obtained to produce the finer particle size in nanofluid. The results indicate the silver electrodes in alcohol fluid will produce the spherical nanosilver particles. The mean particle size of silver in different dielectric liquid temperatures of-40, -20, 0, and 10℃ is about13.4, 15.8, 17.5, and 21.6 nm, respectively. This indicates that the well suspended fluid can be obtained by controlling the lower dielectric fluid temperature.  相似文献   
2.
采用电化学阻抗谱和极化曲线研究了碳钢电极在以模拟冷却水为基液的Al_2O_3纳米流体中的腐蚀行为.实验结果表明,Al_2O_3纳米颗粒对碳钢的腐蚀有一定的抑制作用;Al_2O_3纳米流体中碳钢电极的耐蚀性能随着温度的升高而降低,添加分散剂十二烷基苯磺酸钠(SDBS)对碳钢也有一定的缓蚀作用,当SDBS的用量超过一定值时,对碳钢的缓蚀性能开始下降.  相似文献   
3.
In this paper, modeling and optimization of Al2O3–water nanofluid flow in horizontal flat tubes is performed using a combination of computational fluid dynamics (CFD) and response surface methodology (RSM). At first, nanofluid flow is solved numerically in various flat tubes using CFD techniques and the heat transfer coefficient () and pressure drop () in tubes are calculated. The numerical simulations are performed using two phase mixture model by FORTRAN programming language. The flow regime and the wall boundary conditions are assumed to be laminar and constant heat flux respectively. In the second step, numerical data of the previous step will be used for a parametric study, modeling and optimization of nanofluid flow in flat tubes using the RSM technique.It is shown that the results include important design information on nanofluid parameters in flat tubes. The important design information about the relationship between design variables and responses will not be achieved without the simultaneous use of CFD and optimization approaches.  相似文献   
4.
The purpose of this paper is to study the characteristics of the combined convection heat transfer and a micropolar nanofluid flow passing through an impermeable stretching sheet in a porous medium. The nanofluid flow field is affected by a magnetic field perpendicular to the sheet. The dynamic viscosity of the micropolar nanofluid changes under the influence of the magnetic field. The continuity, linear momentum, angular momentum, and energy equations are first simplified using the order of magnitude technique that, along with the applied boundary conditions and the definition of the appropriate parameters, are transferred to the similarity space using the similarity analysis. Then the resulting equations are solved using the Runge–Kutta method.The distinction of the macroscale and microscale flow fields and temperature fields resulting from different nanoparticle shapes was clarified. Increasing the Hartmann number, the vortex viscosity parameter, the magnetic parameter, the nanoparticle volume fraction, and the permeability parameter of the porous media increased the surface friction on the sheet. Increasing the vortex viscosity parameter, the magnetic parameter, and the volume fraction of the nanoparticles increases the Nusselt number.  相似文献   
5.
闫鑫  徐进良 《化工进展》2019,38(6):2618-2625
实验研究了亲水和疏水表面上太阳能加热去离子水及金纳米流体液滴三相接触线动力学。在亲水和疏水表面滴加2μL去离子水和纳米流体液滴,用一定功率太阳能模拟器照射液滴使其蒸发,期间采用高速摄像机实时记录液滴在不同表面上的蒸发过程。由MATLAB程序处理图像得到液滴在不同表面上蒸发过程中接触角和接触圆直径的动态变化过程。发现液滴接触线在不同亲疏水表面上存在不同运动特性。去离子水液滴在亲水表面上常接触面积模式和常接触角模式依次控制蒸发过程。去离子水液滴在疏水表面上都呈现出“黏-滑”蒸发特性,即液滴先以常接触面积模式蒸发,之后接触线快速滑动,接触线固定后再以常接触面积模式蒸发,依次往复。纳米流体液滴在亲水表面上主要以常接触面积蒸发模式为主,在疏水表面上同样呈现“黏-滑”蒸发特性。从液滴表面能角度出发,对液滴接触线“钉扎”和“去钉扎”过程进行详尽分析,得出基底润湿性和纳米颗粒沉积是影响液滴接触线在表面上运动的重要因素。  相似文献   
6.
A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady state, axisymmetric two-dimensional in a vertical cylindrical channel filled with porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations using Darcy law and Boussinesq's approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 program. The parameters affected on the system are Rayleigh number ranging within (10≤ Ra ≤ 103), aspect ratio (1 ≤ As 〈 5) and the volume fraction (0 ≤0 〈 0.2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that as ~ increase from 0.01 to 0.2 the value of the mean Nusselt number increase 50.4% for Ra = 1,000.  相似文献   
7.
In the current paper, a new hybrid nanofluid based on graphene oxide sheets and silicon nanoparticles is proposed for thermal applications. GO sheets and Si nanoparticles with different mixture ratios are dispersed in distilled water. Dynamic viscosity is measured at temperatures within the range 20–50 °C and the values are compared to the results available in the literature. The results indicated that the viscosity increases with increasing the mixture ratio of graphene oxide. A new correlation for the dynamic viscosity based on the experimental findings is proposed. Finally, the criteria for the performance of new hybrid nanofluid for thermal applications are analyzed.  相似文献   
8.
This paper investigated the role of emission characteristics of a diesel engine when ferrofluid blended with Caulerpa Racemosa oil methyl ester (CROME) is used as a fuel. The major problem areas for compression ignition (CI) engines are emissions. Nanofluid using magnetite was synthesized by reacting Iron II (FeCl2) and Iron III (FeCl3) in aqueous ammonia (H5NO) solution to form magnetite ferrofluid (Fe3O4). The fuel that was used in the CI engine was prepared comprising 98.7% [CROME], 1% [Fe3O4], and 0.3% [(CH3)3NOH] by volume. The results show that the CI engine works well and the power outputs are steady running with the biodiesel blends at different loads. The acquired information was studied and it was found that there was a decrease in hydrocarbon (HC), carbon monoxide (CO), nitrogen oxide (NOx), sulfur dioxide (SO2), and smoke.  相似文献   
9.
A mathematical model for predicting evaporation in the thin film region was developed and its analytical solutions were obtained for thin‐film thickness, the heat transport per unit length and the total heat flux transport in the thin‐film region. These analytical solutions show that the higher heat flux through the thin film region occurs due to the higher superheat. The maximum evaporative rate occurs when the effects of the increase in the temperature difference and in the thin film thickness on the heat flux q stay equal. A nanofluid, which is a colloidal mixture of nanoparticles (1 nm to 100 nm) and a base liquid (nanoparticle fluid suspensions), is employed as the working fluid. In a certain range, increasing the volume fraction of nanoparticles in the base fluid leads to decreasing the kinematic viscosity of the nanofluid and increasing the thermal conductivity, which influences the evaporation in the thin film region. The heat transfer rate per unit length and the total heat flux in the thin film region display various characteristics among the different type of nanofluids due to the differences of the kinematic viscosity and the thermal conductivity.  相似文献   
10.
The primary objective of the present paper is to investigate the novel aspect of nanofluid flow near the stagnation‐point past a permeable cylinder with chemical reaction. The prescribed surface heat and nanoparticle fluxes are also taken into account. The improved homotopy analysis method is introduced to obtain the recursively analytic solutions with high precision. The convergence of the obtained series solution is discussed explicitly. Besides, the effects of physically significant parameters on skin friction coefficient, local Nusselt number, local Sherwood number, as well as profiles of velocity, temperature, and nanoparticle volume fraction are examined and discussed in detail. It is found that the local Sherwood number increases when a chemical reaction occurs in the nanofluid. It is also indicated that the increase of the reaction rate parameter leads to a higher temperature and a lower nanoparticle volume fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号