首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38096篇
  免费   4062篇
  国内免费   1539篇
工业技术   43697篇
  2024年   163篇
  2023年   1040篇
  2022年   1376篇
  2021年   1866篇
  2020年   1736篇
  2019年   1709篇
  2018年   1678篇
  2017年   1742篇
  2016年   1622篇
  2015年   1586篇
  2014年   2231篇
  2013年   2522篇
  2012年   2464篇
  2011年   3207篇
  2010年   2335篇
  2009年   2319篇
  2008年   2027篇
  2007年   2014篇
  2006年   1727篇
  2005年   1375篇
  2004年   1084篇
  2003年   989篇
  2002年   806篇
  2001年   648篇
  2000年   665篇
  1999年   465篇
  1998年   395篇
  1997年   308篇
  1996年   280篇
  1995年   207篇
  1994年   198篇
  1993年   142篇
  1992年   160篇
  1991年   122篇
  1990年   116篇
  1989年   96篇
  1988年   55篇
  1987年   33篇
  1986年   19篇
  1985年   33篇
  1984年   25篇
  1983年   16篇
  1982年   25篇
  1981年   18篇
  1980年   12篇
  1979年   9篇
  1978年   4篇
  1977年   4篇
  1959年   5篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
刘树立 《烧结球团》2003,28(5):16-20
介绍了柳钢新建120万t/a链篦机-回转窑氧化球团工程的主要设计特点。该工程是我国第一条自行设计、设备国产化和采用清洁气体能源的链篦机-回转窑生产线。它的顺利投产,标志着我国炼铁炉料生产技术有了一个新的进步。  相似文献   
2.
A vacuum-annealed La0.6Ca0.4CoO3−x was consecutively oxygenated in air at temperatures decreasing from 800 to 100 °C, and its electrocatalytic activities for oxygen reduction and evolution were then measured as a function of the oxygenation temperature. The valence of Co cation, changing between +2 and +3, was found susceptible to annealing either in vacuum or air. The catalytic activities initially decrease monotonically as the oxygenation temperature was decreased from 800 to 300 °C, as a result of increasing oxygen content, and then rise abruptly with the oxygen reduction activity reaching a maximum at 200 °C and the oxidation activity at 150 °C. X-ray photoelectron spectroscopy analysis indicated that the enhancements by the low-temperature oxygenation involved increased OH coverage and less charged cations at surface. The results clearly reveal the importance of the post-calcination annealing process for optimizing the performance of La0.6Ca0.4CoO3−x in air electrode applications.  相似文献   
3.
Concrete interlocking blocks (CIBs) are utilized in a variety of commercial, municipal, and industrial applications. Superior engineering properties, low maintenance, ease of placement and removal, reuse of original blocks, aesthetic appeal, and immediate availability are the primary reasons for choosing concrete block pavement over other paving surfaces. It is a common practice to pigment building materials, such as mortar, concrete pavers, concrete roof tiles, and prefabricated concrete products; CIBs are colored using iron oxide pigments. This article presents experimental results detailing the properties of CIBs dyed with pigments. The results of these experiments are as follows: Because the particles of iron oxide pigments are finer than those of brown iron oxide, interlocking blocks mixed with the former acquired higher color strength than with the latter. Additional analysis determined a definite relationship between the flexural strength and the absorption ratio of pigment-dyed blocks; the correlation coefficient (R2) of interlocking blocks at 91 days was .90. It is suggested that if iron oxide pigments are to be used to color CIBs, the pigment-to-cement ratio should be below 4%.  相似文献   
4.
用CMOS工艺实现VSR光电集成接收机的途径   总被引:1,自引:0,他引:1  
介绍了10Gbit/s速率的甚短距离光传输系统VSR(Very Short Reach)中的接收机。分析了几种有希望用于VSR系统的CMOS工艺兼容的光电探测器。提出用CMOS电路实现VSR光电集成(OEIC)接收机的可能性和实现方法。  相似文献   
5.
Three different configurations of Au‐nanoparticle/CdS‐nanoparticle arrays are organized on Au/quartz electrodes for enhanced photocurrent generation. In one configuration, Au‐nanoparticles are covalently linked to the electrode and the CdS‐nanoparticles are covalently linked to the bare Au‐nanoparticle assembly. The resulting photocurrent, φ = 7.5 %, is ca. 9‐fold higher than the photocurrent originating from a CdS‐nanoparticle layer that lacks the Au‐nanoparticles, φ = 0.8 %. The enhanced photocurrent in the Au/CdS nanoparticle array is attributed to effective charge separation of the electron–hole pair by the injection of conduction‐band electrons from the CdS‐ to the Au‐nanoparticles. Two other configurations involving electrostatically stabilized bipyridinium‐crosslinked Au/CdS or CdS/Au nanoparticle arrays were assembled on the Au/quartz crystal. The photocurrent quantum yields in the two systems are φ = 10 % and φ = 5 %, respectively. The photocurrents in control systems that include electrostatically bridged Au/CdS or CdS/Au nanoparticles by oligocationic units that lack electron‐acceptor units are substantially lower than the values observed in the analogous bipyridinium‐bridged systems. The enhanced photocurrents in the bipyridinium‐crosslinked systems is attributed to the stepwise electron transfer of conduction‐band electrons to the Au‐nanoparticles by the bipyridinium relay bridge, a process that stabilizes the electron–hole pair against recombination and leads to effective charge separation.  相似文献   
6.
Support effects form important aspect of hydrodesulfurization (HDS) studies and mixed oxide supports received maximum attention in the last two decades. This review will focus attention on studies on mixed oxide supported Mo and W catalysts. For convenience of discussion, these are divided into Al2O3 containing mixed oxide supports, TiO2 containing mixed oxide supports, ZrO2 containing mixed oxide supports and other mixed oxide supports containing all the rest. TiO2 containing mixed oxides received maximum attention, especially TiO2–Al2O3 supported catalysts. A brief discussion about their prospects for application to ultradeep desulfurization is also included. An overview of the available literature with emphasis on research carried out in our laboratory form the contents of this publication.  相似文献   
7.
Carbon supported copper-chromium catalysts are shown to be very active for both the reduction of nitric oxide with carbon monoxide and the oxidation of carbon monoxide with oxygen. Mixed copper-chromium oxide active phases have good activity in the simultaneous removal of nitric oxide and carbon monoxide from exhaust gases. The influence of several catalyst variables has been investigated. The activity per volume of catalyst increases with increasing loading, while the intrinsic activity shows a maximum around C/M=100−50. An optimum catalyst for nitric oxide reduction and carbon monoxide oxidation has a copper/chromium ratio of 2/1. The apparent activation energy for the carbon monoxide oxidation over carbon supported copper-chromium catalysts is 77 kJ/mol, suggesting that the Cu---O bond rupture is the rate-limiting process. The reduction of nitric oxide takes place at higher temperatures. Since all catalysts have a low selectivity for molecular nitrogen formation at lower temperatures, the dissociation of nitric oxide is probably rate determining, resulting in a slightly reduced catalyst system. In an excess of carbon monoxide the reaction is first-order in nitric oxide and zero-order in carbon monoxide. Moisture inhibits the reaction by reversible competitive adsorption, whereas carbon dioxide does not. Oxygen completely inhibits the reduction of nitric oxide due to the more rapid reoxidation of the catalytic sites compared to nitric oxide. Therefore, the reduction of nitric oxide takes place only when all oxygen has been converted and, hence, is shifted to higher temperatures. As a possible consequence, the production of nitrous oxide is reduced. Nitric oxide and molecular oxygen react preferentially with carbon monoxide, so, in an excess of oxidizing component, gasification of the carbon support occurs at higher temperatures after carbon monoxide has been completely consumed.  相似文献   
8.
The Synthesis of Sulfated Titanium Oxide Nanotubes   总被引:1,自引:0,他引:1  
TiO2 nanotubes can be prepared in gram quantities by treating anatase TiO2 powder with concentrated NaOH solution. These TiO2 nanotubes acquired strong acidity after being impregnated with sulfuric acid solution and calcined at 300 °C. The anatase TiO2 powder used to prepare the nanotube did not catalyze the esterification between cyclohexanol and acetic acid, while sulfated TiO2 nanotubes were very reactive toward the esterification reaction.  相似文献   
9.
Przybilla  W.  Schütze  M. 《Oxidation of Metals》2002,58(3-4):337-359
In the oxidation of TiAl alloys, the role of scale-growth stresses formed during oxidation has, thus far, been unknown. In the present paper the oxide-growth stresses were investigated by the deflection-test method in monofacial oxidation (DTMO) accompanied by acoustic-emission measurements. On unmodified surfaces the growth stresses are compressive and reach levels of around –100 MPa. At the same time, significant acoustic emission occurs indicating that even under isothermal conditions, stresses are relieved by a scale-cracking mechanism. For oxide scales on TiAl surfaces, which had been ion implanted with chlorine before oxidation, a very thin protective alumina layer is formed which, however, develops growth stresses in the range of several GPa, accompanied by intensive acoustic emission. In all stress–time curves, a dynamic situation is observed. This consists of phases of stress relief by scale microcracking and phases of stresses increase due to crack healing and further oxide growth. As a result, the level of stress as a function of oxidation time, is characterized by an oscillating course.  相似文献   
10.
The presence of a second metal on platinum surfaces affects the performance of methanol oxidation. However, most of the electrocatalytic reactions are studied by using electrochemically deposited platinum alloys, but in the case of spontaneous deposition the situation is not so clear since the surface distribution, stability and morphology are usually not well documented. The formation of surface decorated samples on mono- and poly-crystalline platinum is followed by electrochemical and spectroscopic techniques and analysis of their performance towards methanol adsorption and oxidation compared with that on pure platinum. Pt/Sn and Pt/Ru are of special interest because of their well-known performance in methanol fuel cells. Methanol oxidation on Pt(111)/Ru, Pt(111)/Sn and Pt(111) shows that ruthenium is the only one able to promote the reaction since the simultaneous dissolution of tin occurs and competes with the process of interest. The in situ infrared spectroscopy is used to compare methanol oxidation on Pt(111)/Ru and Pt(111) in acid media using p-polarized light. The formation of bridge bound carbon monoxide is inhibited in the presence of ruthenium ad-species, whereas on Pt(111) the three adsorption configurations are observed. Linear sweep polarization curves and Tafel slopes (calculated from steady state potentiostatic plots) for methanol oxidation are compared on polycrystalline surfaces modified by tin or ruthenium at different coverages. There is almost no change in the Tafel slopes due to the presence of the foreign metal except for Pt/Ru, where a 0.09 V decade−1 slope was calculated below 0.55 V due to hydroxyl adsorbates on ruthenium islands. The anodic stripping of methanol residues on the three surfaces indicates a lower amount of carbon monoxide-type adsorbates on Pt/Ru, and the simultaneous tin dissolution process leading to residues oxidation on Pt/Sn electrodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号