首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   52篇
  国内免费   15篇
数理化   617篇
  2024年   2篇
  2023年   11篇
  2022年   6篇
  2021年   8篇
  2020年   23篇
  2019年   25篇
  2018年   18篇
  2017年   14篇
  2016年   16篇
  2015年   16篇
  2014年   31篇
  2013年   44篇
  2012年   29篇
  2011年   50篇
  2010年   29篇
  2009年   37篇
  2008年   31篇
  2007年   29篇
  2006年   22篇
  2005年   26篇
  2004年   14篇
  2003年   17篇
  2002年   15篇
  2001年   21篇
  2000年   9篇
  1999年   12篇
  1998年   10篇
  1997年   13篇
  1996年   9篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1978年   1篇
  1971年   1篇
排序方式: 共有617条查询结果,搜索用时 15 毫秒
1.
We discuss an error estimation procedure for the global error of collocation schemes applied to solve singular boundary value problems with a singularity of the first kind. This a posteriori estimate of the global error was proposed by Stetter in 1978 and is based on the idea of Defect Correction, originally due to Zadunaisky. Here, we present a new, carefully designed modification of this error estimate which not only results in less computational work but also appears to perform satisfactorily for singular problems. We give a full analytical justification for the asymptotical correctness of the error estimate when it is applied to a general nonlinear regular problem. For the singular case, we are presently only able to provide computational evidence for the full convergence order, the related analysis is still work in progress. This global estimate is the basis for a grid selection routine in which the grid is modified with the aim to equidistribute the global error. This procedure yields meshes suitable for an efficient numerical solution. Most importantly, we observe that the grid is refined in a way reflecting only the behavior of the solution and remains unaffected by the unsmooth direction field close to the singular point.  相似文献   
2.
Efficient multilevel preconditioners are developed and analyzed for the quadrature finite element Galerkin approximation of the biharmonic Dirichlet problem. The quadrature scheme is formulated using the Bogner–Fox–Schmit rectangular element and the product two‐point Gaussian quadrature. The proposed additive and multiplicative preconditioners are uniformly spectrally equivalent to the operator of the quadrature scheme. The preconditioners are implemented by optimal algorithms, and they are used to accelerate convergence of the preconditioned conjugate gradient method. Numerical results are presented demonstrating efficiency of the preconditioners. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006  相似文献   
3.
Cyclic reduction and Fourier analysis-cyclic reduction (FACR) methods are presented for the solution of the linear systems which arise when orthogonal spline collocation with piecewise Hermite bicubics is applied to boundary value problems for certain separable partial differential equations on a rectangle. On anN×N uniform partition, the cyclic reduction and Fourier analysis-cyclic reduction methods requireO(N 2log2 N) andO(N 2log2log2 N) arithmetic operations, respectively.  相似文献   
4.
We present a linear rational pseudospectral (collocation) method with preassigned poles for solving boundary value problems. It consists in attaching poles to the trial polynomial so as to make it a rational interpolant. Its convergence is proved by transforming the problem into an associated boundary value problem. Numerical examples demonstrate that the rational pseudospectral method is often more efficient than the polynomial method.  相似文献   
5.
The MHD Falkner–Skan equation arises in the study of laminar boundary layers exhibiting similarity on the semi‐infinite domain. The proposed approach is equipped by the orthogonal Sinc functions that have perfect properties. This method solves the problem on the semi‐infinite domain without truncating it to a finite domain and transforming domain of the problem to a finite domain. In addition, the governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables, and then they are solved numerically by the Sinc‐collocation method. It is shown that the Sinc‐collocation method converges to the solution at an exponential rate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
In this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
The aim of this article is to present an efficient numerical procedure for solving nonlinear integro‐differential equations. Our method depends mainly on a Taylor expansion approach. This method transforms the integro‐differential equation and the given conditions into the matrix equation which corresponds to a system of nonlinear algebraic equations with unkown Taylor coefficients. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer program written in Maple10. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   
8.
In this paper, we analyse the iterated collocation method for Hammerstein equations with smooth and weakly singular kernels. The paper expands the study which began in [16] concerning the superconvergence of the iterated Galerkin method for Hammerstein equations. We obtain in this paper a similar superconvergence result for the iterated collocation method for Hammerstein equations. We also discuss the discrete collocation method for weakly singular Hammerstein equations. Some discrete collocation methods for Hammerstein equations with smooth kernels were given previously in [3, 18].  相似文献   
9.
From the literature, it is known that the Least-Squares Spectral Element Method (LSSEM) for the stationary Stokes equations performs poorly with respect to mass conservation but compensates this lack by a superior conservation of momentum. Furthermore, it is known that the Least-Squares Spectral Collocation Method (LSSCM) leads to superior conservation of mass and momentum for the stationary Stokes equations. In the present paper, we consider mass and momentum conservation of the LSSCM for time-dependent Stokes and Navier-Stokes equations. We observe that the LSSCM leads to improved conservation of mass (and momentum) for these problems. Furthermore, the LSSCM leads to the well-known time-dependent profiles for the velocity and the pressure profiles. To obtain these results, we use only a few elements, each with high polynomial degree, avoid normal equations for solving the overdetermined linear systems of equations and introduce the Clenshaw-Curtis quadrature rule for imposing the average pressure to be zero. Furthermore, we combined the transformation of Gordon and Hall (transfinite mapping) with the least-squares spectral collocation scheme to discretize the internal flow problems.  相似文献   
10.
We analyze two collocation schemes for the Helmholtz equation with depth‐dependent sonic wave velocity, modeling time‐harmonic acoustic wave propagation in a three‐dimensional inhomogeneous ocean of finite height. Both discretization schemes are derived from a periodized version of the Lippmann‐Schwinger integral equation that equivalently describes the sound wave. The eigenfunctions of the corresponding periodized integral operator consist of trigonometric polynomials in the horizontal variables and eigenfunctions to some Sturm‐Liouville operator linked to the background profile of the sonic wave velocity in the vertical variable. Applying an interpolation projection onto a space spanned by finitely many of these eigenfunctions to either the unknown periodized wave field or the integral operator yields two different collocation schemes. A convergence estimate of Sloan [J. Approx. Theory, 39:97–117, 1983] on non‐polynomial interpolation allows to show converge of both schemes, together with algebraic convergence rates depending on the smoothness of the inhomogeneity and the source. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号