首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1408篇
  免费   62篇
  国内免费   8篇
工业技术   1478篇
  2024年   2篇
  2023年   6篇
  2022年   13篇
  2021年   18篇
  2020年   32篇
  2019年   53篇
  2018年   61篇
  2017年   37篇
  2016年   128篇
  2015年   59篇
  2014年   101篇
  2013年   79篇
  2012年   54篇
  2011年   277篇
  2010年   148篇
  2009年   137篇
  2008年   83篇
  2007年   60篇
  2006年   35篇
  2005年   27篇
  2004年   14篇
  2003年   13篇
  2002年   5篇
  2001年   4篇
  2000年   10篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
排序方式: 共有1478条查询结果,搜索用时 15 毫秒
1.
Biodiesel has become an attractive diesel fuel substitute due to its environmental benefits since it can be made from renewable resource. However, the high costs surrounding biodiesel production remains the main problem in making it competitive in the fuel market either as a blend or as a neat fuel. More than 80% of the production cost is associated with the feedstock itself and consequently, efforts are focused on developing technologies capable of using lower-cost feedstocks, such as recycled cooking oils and wastes from animal or vegetable oil processing operations.  相似文献   
2.
Biodiesel fuel is a very attractive alternative to conventional fuel and its effects in the engine performance and regulated emissions have been widely studied. However, the impact on unregulated individual compounds or chemical characteristics of exhaust emissions is not fully characterized. In this paper, the semivolatile fractions of the exhaust emissions of biodiesel blends and conventional fuel have been speciated. The results show great differences between the compounds emitted, especially regarding oxygenated and aromatic species. Likewise, there is a clear relationship between speciated hydrocarbons and other important emissions such as total hydrocarbons (HC), particulate matter (PM), volatile organic fraction (VOF) and mean particle diameter (Dm) of PM.  相似文献   
3.
It is well documented in the literature that enzymatic processing of oils and fats for biodiesel is technically feasible. However, with very few exceptions, enzyme technology is not currently used in commercial‐scale biodiesel production. This is mainly due to non‐optimized process design and a lack of available cost‐effective enzymes. The technology to re‐use enzymes has typically proven insufficient for the processes to be competitive. However, literature data documenting the productivity of enzymatic biodiesel together with the development of new immobilization technology indicates that enzyme catalysts can become cost effective compared to chemical processing. This work reviews the enzymatic processing of oils and fats into biodiesel with focus on process design and economy.  相似文献   
4.
生物柴油作为一种可再生的绿色能源,是化石燃料理想的替代品.该文聚焦于纳米催化剂在生物柴油合成中的应用,对常见的纳米催化剂的设计、制备、物化性质、催化行为及重复使用性等方面进行了综述.提出了纳米催化剂在生物柴油合成中所面临的问题并展望其应用前景.  相似文献   
5.
During storage and use, vegetable oil-derived industrial products such as biodiesel and biodegradable lubricants can be subjected to conditions that promote oxidation of their unsaturated components. The materials arising during oxidation and subsequent degradation can seriously impair the quality and performance of such products. Therefore, oxidative stability is a significant issue facing these vegetable oil-derived products, and enhanced understanding of the influence of various components of vegetable oils and storage parameters is necessary. In this work, the oil stability index (OSI) was used for assessing oxidation of monoalkyl esters of FA by varying several parameters. Neat fatty compounds and prepared mixtures thereof were studied for assessing the influence of compound structure and concentration. Small amounts of more highly unsaturated compounds had a disproportionately strong effect on oxidative stability. The recently developed concept of bis-allylic equivalents correlated more closely than the iodine value with the OSI times of mixtures of fatty esters. The OSI times of free acids were shorter than those of the corresponding alkyl esters. The presence of copper, iron, and nickel also reduced oxidative stability, but their effect was less than the presence of more highly unsaturated fatty compounds. Of these metals, copper had the strongest catalytic effect on OSI time. OSI may be an alternative to long-term storage tests for determining the influence of extraneous materials such as metals on oxidative stability.  相似文献   
6.
The effects of using blends of methyl and isopropyl esters of soybean oil with No. 2 diesel fuel were studied at several steady-state operating conditions in a four-cylinder turbocharged diesel engine. Fuel blends that contained 20, 50, and 70% methyl soyate and 20 and 50% isopropyl soyate were tested. Fuel properties, such as cetane number, also were investigated. Both methyl and isopropyl esters provided significant reductions in particulate emissions compared with No. 2 diesel fuel. A blend of 50% methyl ester and 50% No. 2 diesel fuel provided a reduction of 37% in the carbon portion of the particulates and 25% in the total particulates. The 50% blend of isopropyl ester and 50% No. 2 diesel fuel gave a 55% reduction in carbon and a 28% reduction in total particulate emissions. Emissions of carbon monoxide and unburned hydrocarbons also were reduced significantly. Oxides of nitrogen increased by 12%.  相似文献   
7.
Gerhard Knothe  Kevin R. Steidley 《Fuel》2007,86(16):2560-2567
Biodiesel, defined as the mono-alkyl esters of vegetable oils and animal fats is, has undergone rapid development and acceptance as an alternative diesel fuel. Kinematic viscosity is one of the fuel properties specified in biodiesel standards, with 40 °C being the temperature at which this property is to be determined and ranges of acceptable kinematic viscosity given. While data on kinematic viscosity of biodiesel and related materials at higher temperatures are available in the literature, this work reports on the kinematic viscosity of biodiesel and a variety of fatty acid alkyl esters at temperatures from 40 °C down to −10 °C in increments of 5 °C using the appropriately modified standard reference method ASTM D445. Investigating the low-temperature properties of biodiesel, including viscosity, of biodiesel and its components is important because of the problems associated with the use of biodiesel under these conditions. Such data may aid in developing biodiesel fuels optimized for fatty ester composition. An index termed here the low-temperature viscosity ratio (LTVR) using data at 0 °C and 40 °C (divide viscosity value at 0 °C by viscosity value at 40 °C) was used to evaluate individual compounds but also mixtures by their low-temperature viscosity behavior. Compounds tested included a variety of saturated, monounsaturated, diunsaturated and triunsaturated fatty esters, methyl ricinoleate, in which the OH group leads to a significant increase in viscosity as well as triolein, as well as some fatty alcohols and alkanes. Esters of oleic acid have the highest viscosity of all biodiesel components that are liquids at low temperatures. The behavior of blends of biodiesel and some fatty esters with a low-sulfur diesel fuel was also investigated.  相似文献   
8.
Synthesis of Biodiesel from Canola Oil Using Heterogeneous Base Catalyst   总被引:1,自引:0,他引:1  
A series of alkali metal (Li, Na, K) promoted alkali earth oxides (CaO, BaO, MgO), as well as K2CO3 supported on alumina (Al2O3), were prepared and used as catalysts for transesterification of canola oil with methanol. Four catalysts such as K2CO3/Al2O3 and alkali metal (Li, Na, K) promoted BaO were effective for transesterification with >85 wt% of methyl esters. ICP-MS analysis revealed that leaching of barium in ester phase was too high (~1,000 ppm) when BaO based catalysts were used. As barium is highly toxic, these catalysts were not used further for transesterification of canola oil. Optimization of reaction conditions such as molar ratio of alcohol to oil (6:1–12:1), reaction temperature (40–60 °C) and catalyst loading (1–3 wt%) was performed for most efficient and environmentally friendly K2CO3/Al2O3 catalyst to maximize ester yield using response surface methodology (RSM). The RSM suggested that a molar ratio of alcohol to oil 11.48:1, a reaction temperature of 60 °C, and catalyst loading 3.16 wt% were optimum for the production of ester from canola oil. The predicted value of ester yield was 96.3 wt% in 2 h, which was in agreement with the experimental results within 1.28%.  相似文献   
9.
P.K. Sahoo  M.K.G. Babu  S.N. Naik 《Fuel》2007,86(3):448-454
Non-edible filtered high viscous (72 cSt at 40 °C) and high acid value (44 mg KOH/gm) polanga (Calophyllum inophyllum L.) oil based mono esters (biodiesel) produced by triple stage transesterification process and blended with high speed diesel (HSD) were tested for their use as a substitute fuel of diesel in a single cylinder diesel engine. HSD and polanga oil methyl ester (POME) fuel blends (20%, 40%, 60%, 80%, and 100%) were used for conducting the short-term engine performance tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over entire range of engine operation at varying conditions of speed and load. The brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) were calculated from the recorded data. The engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature and exhaust emissions (CO, CO2, HC, NOx, and O2) were recorded. The optimum engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency was observed at 100% load for neat biodiesel. From emission point of view the neat POME was found to be the best fuel as it showed lesser exhaust emission as compared to HSD.  相似文献   
10.
Distillers grains and solubles generated from the ethanol fermentation of grains contain acylglycerols (AG) that can be successfully converted to fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE), commonly known as biodiesel. However, when grain sorghum (milo) DDGS were used as a feedstock for in situ transesterification (IST) under the previously established optimal conditions for other AG-bearing substrates, the yield plateaued at only 32.2% (corrected in this study to 24.2%). Several IST studies have reported significantly higher conversions of AG-bearing substrates to FAME. Therefore, the goal of this IST study was to improve the conversion of the AG in milo DDGS to FAME and FAEE by varying the temperature of reaction, the concentrations of the base (sodium methylate, NaOMe), volume of methanol and ethanol, and the amount of moisture in DDGS. Methyl tert-butyl ester was also evaluated as a co-solvent intended to improve miscibility and reaction rate. Among these variables, the most effective change was an increase in temperature from 40 to 65 °C. The most successful reaction used a AG:NaOMe:MeOH molar ratio of 1.0:2.6:168.9. Those reaction conditions used 4.8 mmol NaOMe dissolved in 12.6 mL MeOH and resulted in a 79.8% conversion of AG to FAME.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号