首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   0篇
工业技术   95篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2013年   9篇
  2012年   4篇
  2011年   15篇
  2010年   11篇
  2009年   15篇
  2008年   8篇
  2007年   10篇
  2006年   7篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  1998年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
1.
In this study, the utility of quagga mussels (Dreissena bugensis) as biomonitors was investigated by measuring total concentrations of three trace metals, cadmium, copper, and zinc, in soft tissues. Quagga mussels were sampled from five sites along the upper St. Lawrence River, including one industrially influenced site, from 1999 through 2007. Mussels were collected from near-shore areas, divided into 5 size classes based on maximum shell length, and tissues were pooled for analysis of each size group. Two-way analysis of variance and a posteriori range tests were used to test for differences among sites along a distance gradient from the outflow of Lake Ontario and to examine inter-annual variability within and among sites. Cadmium concentrations were higher nearer the outflow of the lake. Copper concentrations varied among sites and years, but were generally highest near the industrial site. Zinc concentrations were relatively uniform, possibly reflecting internal regulation. Animal size measured as shell length was not an important factor in this section of the river, but warrants further consideration in a wider range of ecosystems and contaminant exposure levels. In general, concentrations of the three metals were not high compared to reports in the published literature for dreissenid mussels in contaminated environments. However, few studies have utilized quagga mussels rather than zebra mussels. The two species may differ in bioaccumulation patterns and may not be interchangeable as biomonitors. Further studies of bioaccumulation of contaminants by quagga mussels in a wider range of contaminant exposures would be useful particularly as quagga mussels displace zebra mussels in the Laurentian Great Lakes and the St. Lawrence River.  相似文献   
2.
Levels of iron, zinc, manganese, copper, tin, aluminium, magnesium, sodium, potassium, lead, arsenic, chromium, cadmium, titanium and calcium were determined in cocoa seeds shell ash, liquid effluent, soil sediments and associated plants (kokoyam and cassava parts) using an atomic absorption spectrophotometer from a cocoa processing industry located at Akure along the Akure–Owo express road, Ondo State, Nigeria. The soil sediments metals were more highly concentrated than the corresponding values in the liquid effluent; both samples showed evidence of metal bioaccumulation. The toxic trace metals determined were mostly above the permissible safe levels. Plants should not be planted along the effluent channel to avoid plant bioaccumulation of toxic metals.  相似文献   
3.
 Cultivated Agaricus bisporus possess the ability to bioaccumulate seven heavy metals (Pb, Cd, Hg, Fe, Cu, Mn, and Zn). The cultivated champignon mushroom A. bisporus was grown in soil composts of 16 different compositions. An edible mushroom, A. bisporus was also cultivated on humic compost artificially fortified with the seven heavy metals at five different concentrations (0.1 mg/kg, 0.5 mg/kg, 1.0 mg/kg, 3.0 mg/kg, and 10.0 mg/kg) and on control substrate (0 mg/kg) on a dry weight basis. The method of measuring bioaccumulation was flame atomic absorption spectrophotometry. Received: 1 October 1997 / Revised version: 19 January 1998  相似文献   
4.
Cereals are an important source of sterols and stanols in the human diet. The present study underlines the effect of genotype and weather conditions in bread wheat, on total sterol and stanol content (TSS), agronomic traits, proteins and ash content under organic conditions. Variations in TSS as well as other characters between two sowing dates were observed. A broad genotypic variability was also reported since extreme genotypes differed by more than 30 mg 100 g−1 DW for TSS, with total stanol content varying twofold. Moreover, two groups of genotypes that differed in agronomic production, ash and protein content were depicted, based on their response to an increase in temperature. This result suggests that the genotypic factor prevails over the sowing date factor for determining sterol and stanol traits in wheat cultivated under organic conditions. Nevertheless, a strong interaction exists between the two factors, which can be used to drive bioaccumulation of these molecules.  相似文献   
5.
Bioaccumulation models are an important and widely-used tool for assessing ecosystem health with regards to heavy metal contamination. However, these models do not usually account for the potentially significant effect of temperature-dependency in metal uptake. In this study, we explored the role of temperature-dependency in heavy metal bioaccumulation by developing and comparing two kinetic-based copper bioaccumulation models for a common estuarine oyster (Saccostrea glomerata): (i) a standard first-order model that ignores temperature effects; and (ii) a modified first-order model that uses a standard temperature function to account for the temperature-dependency of the uptake rate constant. The models were calibrated within a Bayesian framework so that parameters could be treated as random variables and any uncertainty propagated through to the model output. A 12-month biomonitoring study was carried out within Moreton Bay, Queensland, Australia to provide time-series data for the modelling. Results of the modelling showed that the two bioaccumulation models provided comparable fits of the biomonitoring field data. However, dependent on the time of year and monitoring period selected, the copper uptake rate would vary dramatically due to temperature effects, which could result in an overestimation or underestimation of the copper uptake rate. Finally by calibrating the bioaccumulation models within a Bayesian framework, these models were able to utilize prior knowledge of the model parameters as part of the calibration process and also account for the uncertainty and variability in the bioaccumulation predictions. The ability to account for uncertainty and variability is an important consideration when undertaking environmental risk assessments especially in coastal waterways where there are strong seasonal variations.  相似文献   
6.
Hexabromocyclododecane (HBCD) is the third most used brominated flame retardant globally, and has been found widely distributed in the environment. The present study reports concentrations and spatial patterns of α, β and γ-HBCD in a contaminated Norwegian fjord. Intertidal surface sediment and selected species from the marine food web were sampled at five locations in increasing distance from a known point source of HBCD. All sediment and biota samples were analyzed for the three HBCD diastereomers by liquid chromatography and mass spectrometry (LC/MS). The results demonstrated a HBCD gradient with decreasing concentrations at increasing distance from the point source in sediment and sedentary species, but less so in the species with large feeding ranges. Mean concentrations of ΣHBCD at the closest/most remote locations relative to the point source were 9000/300 ng g− 1 TOC in sediment and 150/90 ng g− 1 lw in the species with largest feeding range (great black-backed gull). The HBCD diastereomer patterns were similar for each of the matrices (sediment, organisms) independent of distance from the source, indicating no difference in environmental partitioning between the diastereomers. However, the concentration ratio of diastereomers in each matrix ranged from 3:1:10 (α:β:γ) in the sediments to 55:1 (α:γ) in the highest trophic level species, suggesting diastereomer-specific bioaccumulation in the organisms.  相似文献   
7.
Liao CM  Lin MC  Chen JS  Chen JW 《Water research》2002,36(20):5102-5112
A dynamic model that links biokinetics and consumer–resource dynamics for describing zinc (Zn) accumulation in abalone Haliotis diversicolor supertexta has been developed and then applied to Zn data from real abalone farms. The biokinetic parameters used in this study, uptake and depuration rate constants of abalone and their food source, red alga Gracilaria tenuistipitata var. liui, were obtained from a laboratory 14-d exposure experiment. We carried out a sensitivity analysis of the model by using the fractional factorial design technique, taking into account the influence of consumer–resource-related parameters such as growth and death rates and biomass and biokinetic parameters characterized by bioconcentration factor. Results indicate that the response time of biomagnification dynamics of Zn accumulation in abalone was influenced mainly by the growth rate of algae and biomass and the death rate of abalone and by interactions algae biomass and abalone death rate and abalone and algae biomass. New algae production results in substantially higher values of biomagnification factor. The linked model was then applied to field observations from a real-life situation of variable Zn concentrations occurring in abalone farms. Simulation results show that the predicted values are within a factor of 2 of the measured values (% errors range from 5.3±4% to 44.1±8%). Both model analysis and model application to the abalone farms suggest that the linking influences between biokinetics and consumer–resource dynamics support Zn accumulation in H. diversicolor supertexta and in G. tenuistipitata var. liui as functions of Zn concentration in water and abundance of food occurring in abalone farms.  相似文献   
8.
The paper presents an ecological risk-assessment methodology which (a) addresses surface-water exposures to aquatic mammals and birds, and (b) accounts for long-term accumulation and biomagnification of pollutants. The methodology has been adapted from those developed in the USA for compliance with US Environmental Protection Agency requirements, and combines predicted or measured surface-water concentration data with information on the natural history of wildlife species and chemical-specific bioaccumulation factors, to determine whether estimated exposures would exceed toxicological criteria. Whilst the methodology is applied to metals in leachate discharges from landfill sites, the general approach is applicable to other industrial sites. The approach could provide the basis for a shift towards more numerical risk-based ecological assessments in a wide variety of contexts.  相似文献   
9.
Estuarine sediments are often highly enriched in particle-reactive metal contaminants and because aquatic animals have often been shown to acquire metals predominantly from their diet, benthic animals feeding on deposited or resuspended sediments may also accumulate metals through this uptake pathway. Laboratory experiments were performed in which the surface deposit-feeding polychaete, Nereis succinea, was exposed to As(+ 5), Cd, and Cr(+ 3) in pore water or in estuarine sediments with and without enrichment with algal debris. These experiments generated metal uptake parameters (assimilation efficiency of ingested metal [AE], uptake rate constant of dissolved metal, efflux rate constants following dietary or aqueous metal exposures) used in a kinetic model of metal bioaccumulation. The model showed that > 97% of the body burden of these metals is accumulated through ingested sediment. The kinetic model was further modified to consider the geochemical fractionation of the metals in the sediments because metals bound to some fractions were shown to be unavailable to these polychaetes. The modified model substituted the AE term for each metal by the percentage of metal extracted in neutral and weak acid exchangeable fractions (termed “carbonex” fraction) multiplied by the slope of the regression between the metal AE and its fractionation in carbonex. The modified model generated predictions of As, Cd, and Cr body burdens in polychaetes at three different estuarine sites that matched independent field observations at these sites (r2 = 0.84 for sediments without organic enrichment, r2 = 0.87 with organic enrichment). Model predictions that relied on total metal concentrations showed weaker relationships (r2 = 0.11-0.50). This study adds to the evidence for the dominance of dietary uptake of metals in aquatic animals and identifies a key sedimentary fraction of metals that can account for bioavailability of sediment-bound metals.  相似文献   
10.
The bioaccumulation and retention capacities of some key local contaminants of the New Caledonia lagoon (Ag, As, Cd, Co, Cr, Cu, Mn, Ni and Zn) have been determined in the oyster Isognomon isognomon and the edible clam Gafrarium tumidum during transplantation experiments. In a first set of experiments, oysters and clams from a clean site were transplanted into contaminated sites. Uptake kinetics determined in the field indicated that for Cr and Cu in oysters and Co, Ni, and Zn in clams, concentrations in transplanted bivalves reached those of resident organisms after 100d, whereas for the other elements, it would require a longer time for transplanted bivalves to reach the same levels as in the resident populations (e.g., up to 3 years for Cd). However, the slow uptake rate for metals observed in the latter transplantation is rather related to low bioavailability of metals at the contaminated sites than to low bioaccumulation efficiency of the organisms. Indeed, results of a second transplantation experiment into two highly contaminated stations indicated a faster bioaccumulation of metals in both bivalves. Results of both transplantations point out that the clam G. tumidum is a more effective bioindicator of mining contamination than I. isognomon, since it is able to bioaccumulate the contaminants to a greater extent. However the very efficient metal retention capacity noted for most elements indicates that organisms originating from contaminated sites would not be suitable for monitoring areas of lower contamination. Hence, geographical origin of animals to be transplanted in a monitoring perspective should be carefully selected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号