首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   87篇
  国内免费   143篇
地球科学   704篇
  2024年   3篇
  2023年   19篇
  2022年   32篇
  2021年   34篇
  2020年   50篇
  2019年   35篇
  2018年   27篇
  2017年   21篇
  2016年   33篇
  2015年   29篇
  2014年   32篇
  2013年   28篇
  2012年   20篇
  2011年   28篇
  2010年   22篇
  2009年   32篇
  2008年   30篇
  2007年   22篇
  2006年   38篇
  2005年   14篇
  2004年   17篇
  2003年   20篇
  2002年   19篇
  2001年   12篇
  2000年   9篇
  1999年   11篇
  1998年   10篇
  1997年   11篇
  1996年   9篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
排序方式: 共有704条查询结果,搜索用时 0 毫秒
1.
Despite the severity of tropical cyclone ‘Winifred’, which crossed the Great Barrier Reef on 1 February 1986, there were little long-term effects on lagoon surface sediments from reefs in its path. Short-term effects were apparent only at one particularly exposed area. These were: an increase in proportion of the coarse fraction, the establishment of sand ripples, and the destruction of the mounds produced by callianassid shrimps (normally the dominant topographic feature). Within six weeks this area was indistinguishable from a typical reef lagoon. This is probably the result of sediment reworking by callianassid shrimp, involving selective burial of the coarse fragments and transport to the surface of finer particles. Sediment turnover rates by callianassids are commensurate with change to the sediment within the relatively short period observed. The sediment fauna responded quickly to the changes in sediment type. Immediately after the cyclone the disturbed area supported a fauna typical of the coarse sediments on the shallow reef flat, as the sediment reverted to a more normal type so the fauna changed back to that typical of a reef lagoon.  相似文献   
2.
Some sponges of the genus Cliona (Porifera, Hadromerida, Clionidae) simultaneously excavate and encrust calcareous substratum, competing aggressively for illuminated space with corals and other organisms. To interpret current trends of reef space occupation, the patterns of distribution and size of three Caribbean species were examined at San Andrés Island and Islas del Rosario in Colombia. While Cliona aprica was ubiquitous, C. caribbaea (= C. langae) preferred deep and protected reef zones, and C. tenuis shallow and wave‐exposed settings. In contrast to the effect on other excavating sponges, chronic exposure to raw sewage did not significantly increase the abundance of the studied sponges. Substratum occupation/availability ratios showed a positive tendency of the sponges toward certain coral skeletons, and a negative or neutral tendency toward calcareous rock, indicating that establishment may be easier on clean, recently dead coral than on older, heavily incrusted substratum. High relief generally limits sponge size to that of the illuminated portions of the substratum. A generally lower proportion of small individuals than of larger ones indicates currently low recruitment rates and low subsequent mortality. Successful events of higher recruitment seem to have occurred for C. tenuis. These are related to the massive acroporid coral die‐off in the early 1980s and to asexual dispersion during storms, resulting in a current 10% substratum cover. Reefs with high coral mortality were and/or are thus more susceptible to colonization and subsequent space occupation by these sponges, although relief may prevent space monopolization.  相似文献   
3.
Binogeochemical process of major elements in sining particulate of Nansha coral reef lagoons,South TXBinogeochemicalprocessofm...  相似文献   
4.
INTRODUCTIONTheDenglouCape ,inthesouthwestoftheLeizhouPeninsula ,isatthenorthmarginoftropicalzone .SeveralresearchesandcartographiesoftheregionalgeomorphologyandQuater narygeology ,whichwerecarriedoutinthepast,allincludethisarea (MGL ,SCSIO ,CAS ,1 978;GPCSGRCZT…  相似文献   
5.
湖南慈利晚二叠世海绵礁与珊瑚礁的古生态研究   总被引:5,自引:0,他引:5       下载免费PDF全文
王永标  徐桂荣 《地球科学》1997,22(2):135-138
中国南方晚二叠世生物礁分布广泛,但绝大多数属于海绵礁,湖南慈利晚二叠世除发育有海绵礁外,还有至今为止发现的世界上发育最好的古代珊瑚礁,而且海绵礁与珊瑚礁在同一条带上连续分布;因此是研究海绵礁与珊瑚礁古生态关系十分理想的场所,通过对慈利晚二叠世海绵礁及珊瑚礁内部造礁生物群落、沉积相特征,礁化演化序列及成岩作用特征等的分析和对比来研究它们之间的生态关系,发现其中的海绵礁为台地边缘礁,而珊瑚礁则应属于岸  相似文献   
6.
滇东华宁盘溪火车站以北的金山—大石山地区发育中、晚泥盆世的丘状珊瑚礁。以Alveolites和Thamnopora为代表的床板珊瑚为造礁生物。纵剖面上岩相变化的记录清楚地表明,该礁体经历了定殖、繁殖和衰亡三个阶段。海水变浅及其盐化是导致礁体衰亡的直接原因  相似文献   
7.
近年来珊瑚白化现象日益严峻。白化意味着珊瑚共生虫黄藻密度的降低,然而目前关于珊瑚体内的脂质在虫黄藻密度降低时对维持能量供给稳定的意义尚不清楚。本研究以2020年3月和6月在西沙群岛采集的帛琉蜂巢珊瑚(Favia palauensis)和澄黄滨珊瑚(Porites lutea)样品为材料,通过生理参数(虫黄藻密度、脂质含量)与地球化学指标(虫黄藻的稳定氮同位素δ15Nz值)相结合的方法,探讨了珊瑚脂质对虫黄藻密度及其光合作用强度变化的响应。结果显示,夏季两种珊瑚的虫黄藻密度和δ15Nz值均显著下降,意味着夏季虫黄藻密度降低导致了其光合作用强度的降低。与此同时,两种珊瑚的脂质含量也显著下降,并且脂质含量与虫黄藻密度、δ15Nz值之间均呈正相关关系,这说明珊瑚脂质含量与虫黄藻光合作用强度的变化之间存在耦合关系。当光合作用强度降低时,珊瑚可以通过消耗其自身储存的脂质更好地维持能量供给的稳定,这对提高环境胁迫的适应能力以及抗白化能力具有重要意义。  相似文献   
8.
To investigate whether or not regional–temporal patterns of seagrass habitat use by fishes existed at the Ryukyu Islands (southern Japan), visual surveys were conducted in seagrass beds and adjacent coral reefs in northern, central, and southern Ryukyu Islands, in November 2004, and May, August, and November 2005, the northern region having less extensive seagrass beds compared with the central and southern regions. During the study period, the seagrass beds were utilized primarily by 31 species, the densities of some of the latter differing significantly among regions. With the exception of Apogonidae and Holocentridae, all species were diurnal and could be divided into 6 groups based on seagrass habitat use patterns; (1) permanent residents A (10 species, e.g. Stethojulis strigiventer), juveniles and adults living in seagrass beds as well as other habitats; (2) permanent residents B (5 species, e.g. Calotomus spinidens), juveniles and adults living only or mainly in seagrass beds; (3) seasonal residents A (4 species, e.g. Cheilodipterus quinquelineatus), juveniles living in seagrass beds as well as other habitats; (4) seasonal residents B (6 species, e.g. Lethrinus atkinsoni), juveniles living only or mainly in seagrass beds; (5) transients (5 species, e.g. Parupeneus indicus), occurring in seagrass beds in the course of foraging over a variety of habitats; and (6) casual species (1 species, Acanthurus blochii), occurring only occasionally in seagrass beds. Regarding temporal differences, juvenile densities in each group were high in May and August compared with November in each region, whereas adult densities did not differ drastically in each month. For regional differences, juvenile and adult densities of permanent residents A and B were higher in the southern and central regions than in the northern region. Moreover, some seasonal residents showed possible ontogenetic habitat shift from seagrass beds to coral reefs in each region. These results indicated that seagrass habitat use patterns by fishes changed temporally and regionally and there may be habitat connectivity between seagrass beds and coral reefs via ontogenetic migration in the Ryukyu Islands.  相似文献   
9.
This study analyzed how coral communities change along a gradient of increasing exposure to a mud-discharging river in the Enipein Catchment, Pohnpei, Micronesia. Using video transects, we quantified benthic communities at five sites along a gradient moving away from the river mouth towards the barrier reef. The most river-impacted site was characterized by a high accumulation of mud, low coral cover and low coral diversity. Although coral cover leveled off at ∼400 m from the river mouth to values found at the outer-most sites, coral diversity continued to increase with increasing distance, suggesting that the most distant site was still impacted by the river discharges. Fungiidae, Pavona, Acropora, Pachyseris and Porites rus all significantly increased in cover with distance from the river, while Turbinaria decreased. The combined presence and abundance of these six species groups, together with coral species richness, may help to indicate the effects of terrestrial runoff in similar runoff-exposed settings around Micronesia, whereas coral cover is not a sensitive indicator for river impact. Coral reefs are important resources for the people of Pohnpei. To prevent further degradation of this important resource, an integrated watershed approach is needed to control terrestrial activities.  相似文献   
10.
Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean–atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on regenerating and recovering coral reefs have originated from broadcast spawning taxa with a potential for asexual growth, relatively long distance dispersal, successful settlement, rapid growth and a capacity for framework construction. Whether or not affected reefs can continue to function as before will depend on: (1) how much coral cover is lost, and which species are locally extirpated; (2) the ability of remnant and recovering coral communities to adapt or acclimatize to higher temperatures and other climatic factors such as reductions in aragonite saturation state; (3) the changing balance between reef accumulation and bioerosion; and (4) our ability to maintain ecosystem resilience by restoring healthy levels of herbivory, macroalgal cover, and coral recruitment. Bleaching disturbances are likely to become a chronic stress in many reef areas in the coming decades, and coral communities, if they cannot recover quickly enough, are likely to be reduced to their most hardy or adaptable constituents. Some degraded reefs may already be approaching this ecological asymptote, although to date there have not been any global extinctions of individual coral species as a result of bleaching events. Since human populations inhabiting tropical coastal areas derive great value from coral reefs, the degradation of these ecosystems as a result of coral bleaching and its associated impacts is of considerable societal, as well as biological concern. Coral reef conservation strategies now recognize climate change as a principal threat, and are engaged in efforts to allocate conservation activity according to geographic-, taxonomic-, and habitat-specific priorities to maximize coral reef survival. Efforts to forecast and monitor bleaching, involving both remote sensed observations and coupled ocean–atmosphere climate models, are also underway. In addition to these efforts, attempts to minimize and mitigate bleaching impacts on reefs are immediately required. If significant reductions in greenhouse gas emissions can be achieved within the next two to three decades, maximizing coral survivorship during this time may be critical to ensuring healthy reefs can recover in the long term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号