首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   23篇
工业技术   87篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   9篇
  2019年   7篇
  2018年   10篇
  2017年   13篇
  2016年   6篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2006年   1篇
  2004年   5篇
  2003年   1篇
  2002年   6篇
  2001年   1篇
  2000年   5篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
In this work, the influence of the sintering temperature on the physical properties of (Pb0.8La0.2)(Ti0.9Ni0.1)O3 (PLT-Ni) ceramics is reported. The experimental data revealed that the energy band gap of PLT-Ni ceramics could be tailored from approximately 2.7 to 2.0 eV by changing the sintering temperature from 1100°C to 1250°C. It is demonstrated that the simple substitution of Ti4+ by Ni2+ cations is effective to decrease the intrinsic band gap while increasing the tetragonality factor and the spontaneous polarization. However, the additional red-shift observed in the absorption edge of the PLT-Ni with increasing the sintering temperature was associated with a continuous increase in the oxygen vacancies () amount. It is believed that the impact of the creation of these thermally induced is manifold. The presence of and Ni2+ ions generate the Ni2+- defect-pairs that promoted both a decrease in the intrinsic band gap and an additional increase of the tetragonality factor, consequently, increasing the spontaneous polarization. The creation of Ni2+- defects also changed the local symmetry of Ni2+ ions from octahedral to a square pyramid, thus lifting the degeneracy of the Ni2+ 3d orbitals. With the increase in the sintering temperature, lower-energy absorbing intraband states were also formed due to an excess of , being responsible for an add-on shoulder in the absorption edge, extending the light absorption curve to longer wavelengths and leading to an additional absorption in “all investigated” spectrum as well.  相似文献   
2.
Pieces of saw-cut La0.85Sr0.15MnO3 were joined at 1150° and 1250°C under a compressive stress. The strains to form the joints were ∼0.1. Joints formed by plastic deformation were examined using scanning electron microscopy, and they were indistinguishable from the bulk. The room-temperature direct-current resistivity of the joined pieces was identical to that measured in the bulk material. This indicated that a sound, electrically conducting joint could be formed using plastic deformation (grain-boundary sliding) with little surface preparation.  相似文献   
3.
Smart Electroceramics   总被引:8,自引:0,他引:8  
"Smart" materials have the ability to perform both sensing and actuating functions. Passively smart materials respond to external change in a useful manner without assistance, whereas actively smart materials have a feedback loop which allows them to both recognize the change and initiate an appropriate response through an actuator circuit. Many smart materials are analogous to biological systems: piezoelectric hydrophones are similar in mechanism to the "ears" by which a fish senses vibrations. Piezoelectrics with electromechanical coupling, shape-memory materials that can "remember" their original shape, electrorheological fluids with adjustable viscosities, and chemical sensors which act as synthetic equivalents to the human nose are examples of smart electroceramics. "Very smart" materials, in addition to sensing and actuating, have the ability to "learn" by altering their property coefficients in response to the environment. Integration of these different technologies into compact, multifunction packages is the ultimate goal of research in the area of smart materials.  相似文献   
4.
Solid solutions of (1?x)BaTiO3xBi(Mg2/3Nb1/3)O3 (0 ≤ x ≤ 0.6) were prepared via a standard mixed‐oxide solid‐state sintering route and investigated for potential use in high‐temperature capacitor applications. Samples with 0.4 ≤ x ≤ 0.6 showed a temperature independent plateau in permittivity (εr). Optimum properties were obtained for x = 0.5 which exhibited a broad and stable relative εr ~940 ± 15% from ~25°C to 550°C with a loss tangent <0.025 from 74°C to 455°C. The resistivity of samples increased with increasing Bi(Mg2/3Nb1/3)O3 concentration. The activation energies of the bulk were observed to increase from 1.18 to 2.25 eV with an increase in x from 0 to 0.6. These ceramics exhibited excellent temperature stable dielectric properties and are promising candidates for high‐temperature multilayer ceramic capacitors for automotive applications.  相似文献   
5.
Composite additives are an efficient means to improve the high-temperature stability and slag resistance of low-carbon MgO-C refractories. In this work, Al2O3-SiC powder was firstly synthesized from electroceramics waste by carbon embedded method at 1500°C, 1550°C, and 1600°C for 4 h, and then the as-synthesized Al2O3-SiC powder was used as an additive to low-carbon MgO-C refractories. The effects of its addition amounts of 0, 2.5 wt.%, 5.0 wt.%, and 7.5 wt.% on the properties of the refractories were investigated in detail. It was found that increasing the heat treatment temperature is beneficial to the phase conversion of mullite and quartz to alumina and silicon carbide in the electroceramics waste. Furthermore, the addition of Al2O3-SiC powder effectively improves the performance of low-carbon MgO-C samples, and the formation of spinel dense layer and high-viscosity isolation layer is the internal reason for the improvement of the oxidation resistance and slag resistance of low-carbon MgO-C samples. This work provides ideas for the reuse of electroceramics waste and presents an alternative strategy for the performance optimization of low-carbon MgO-C refractories.  相似文献   
6.
BaSnO3陶瓷的制备及其电性能研究   总被引:2,自引:2,他引:0  
以BaCO3、SnO2为原料,微量SiO2、Bi2O3、Sb2O3作烧结助剂,Ta2O5作施主,采用传统的固相反应法,制备出相对密度达97%~99%,平均粒径约为8μm的BaSnO3半导体陶瓷。采用Na2CO3或Li2CO3与Mn(NO3)2的组合作受主掺杂可有效增强BaSnO3陶瓷的晶界效应。当x(Mn(NO3)2)为1%时,BaSnO3陶瓷电阻率达3.3×106Ω.cm,晶粒电阻率为4.3Ω.cm,视在介电常数为1.9×104(1 kHz),经电导激活能测试,估算出晶界势垒约为0.5 eV。  相似文献   
7.
Micro-contact impedance spectroscopy (MCIS) is potentially a powerful tool for the exploration of resistive surface layers on top of a conductive bulk or substrate material. MCIS employs micro-contacts in contrast to conventional IS where macroscopic electrodes are used. To extract the conductivity of each region accurately using MCIS requires the data to be corrected for geometry. Using finite element modeling on a system where the resistivity of the surface layer is at least a factor of ten greater than the bulk/substrate, we show how current flows through the two layers using two typical micro-contact configurations. This allows us to establish if and what is the most accurate and reliable method for extracting conductivity values for both regions. For a top circular micro-contact and a full bottom counter electrode, the surface layer conductivity (σs) can be accurately extracted using a spreading resistance equation if the thickness is ~10 times the micro-contact radius; however, bulk conductivity (σb) values can not be accurately determined. If the contact radius is 10 times the thickness of the resistive surface, a geometrical factor using the micro-contact area provides accurate σs values. In this case, a spreading resistance equation also provides a good approximation for σb. For two top circular micro-contacts on thin resistive surface layers, the MCIS response from the surface layer is independent of the contact separation; however, the bulk response is dependent on the contact separation and at small separations contact interference occurs. As a consequence, there is not a single ideal experimental setup that works; to obtain accurate σs and σb values the micro-contact radius, surface layer thickness and the contact separation must all be considered together. Here we provide scenarios where accurate σs and σb values can be obtained that highlight the importance of experimental design and where appropriate equations can be employed for thin and thick resistive surface layers.  相似文献   
8.
Fluorescence emissions at both 1.31 and 1.55 μm communication windows were observed from Pr3+/Er3+ codoped Ge-As-Ga-S glasses with a single wavelength pumping at 986 nm. The lifetime of the Er3+:4 I 11/2 level decreased as the Pr3+ concentration increased, and that of the Pr3+:1 G 4 level increased as the Er3+ concentration increased. Energy transfer from the Er3+:4 I 11/2 level to the Pr3+:1 G 4 level was responsible for emission of the 1.31 μm fluorescence from the Pr3+:1 G 4 level. Ge-As-Ga-S glasses that have been doped with Pr3+ and Er3+ cations are promising amplifier materials for both 1.31 and 1.55 μm communication windows.  相似文献   
9.
累托石粘土在电瓷工业中的应用研究   总被引:1,自引:0,他引:1  
根据累托石粘土具有可塑性、泥浆性能好、高温不开裂等特点,对湖北钟祥县所产的累托石粘土矿进行了研究。经选矿后除去硫铁矿的精矿含累托石在60~70%,TFe_2O_3低于1.5%,即可用做优质电瓷结合粘土。配方试验证明:累托石粘土具有结合性好、干燥烧成收缩小,其铝质高强度电瓷坯料烧成抗弯曲强度大于147 MPa,坯料塑性指标大于49 N·cm(5 kgf/cm~2),此指标完全可满足电瓷要求。研究结果表明累托石粘土是一种新型的优质电瓷结合粘土。  相似文献   
10.
The recently developed technique of cold sintering process (CSP) enables densification of ceramics at low temperatures, i.e., <300°C. CSP employs a transient aqueous solvent to enable liquid phase‐assisted densification through mediating the dissolution‐precipitation process under a uniaxial applied pressure. Using CSP in this study, 80% dense Li1.5Al0.5Ge1.5(PO4)3 (LAGP) electrolytes were obtained at 120°C in 20 minutes. After a 5 minute belt furnace treatment at 650°C, 50°C above the crystallization onset, Li‐ion conductivity was 5.4 × 10?5 S/cm at 25°C. Another route to high ionic conductivities ~10?4 S/cm at 25°C is through a composite LAGP ‐ (PVDF‐HFP) co‐sintered system that was soaked in a liquid electrolyte. After soaking 95, 90, 80, 70, and 60 vol% LAGP in 1 M LiPF6 EC‐DMC (50:50 vol%) at 25°C, Li‐ion conductivities were 1.0 × 10?4 S/cm at 25°C with 5 to 10 wt% liquid electrolyte. This paper focuses on the microstructural development and impedance contributions within solid electrolytes processed by (i) Crystallization of bulk glasses, (ii) CSP of ceramics, and (iii) CSP of ceramic‐polymer composites. CSP may offer a new route to enable multilayer battery technology by avoiding the detrimental effects of high temperature heat treatments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号