首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12522篇
  免费   15篇
  国内免费   94篇
工业技术   12631篇
  2024年   133篇
  2023年   1074篇
  2022年   509篇
  2021年   821篇
  2020年   895篇
  2019年   815篇
  2018年   784篇
  2017年   759篇
  2016年   891篇
  2015年   895篇
  2014年   1183篇
  2013年   2628篇
  2012年   428篇
  2011年   180篇
  2010年   216篇
  2009年   135篇
  2008年   55篇
  2007年   33篇
  2006年   13篇
  2005年   10篇
  2004年   17篇
  2003年   6篇
  2002年   10篇
  2001年   42篇
  2000年   4篇
  1999年   6篇
  1998年   10篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   11篇
  1993年   3篇
  1992年   2篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   11篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
2.
Tunable and ultrabroadband mid-infrared (MIR) emissions in the range of 2.5–4.5 μm are firstly reported from Co2+-doped nano-chalcogenide (ChG) glass composites. The composites embedded with a variety of binary (ZnS, CdS, ZnSe) and ternary (ZnCdS, ZnSSe) ChG nanocrystals (NCs) can be readily obtained by a simple one-step thermal annealing method. They are highly transparent in the near- and mid-infrared wavelength region. Low-cost and commercially available Er3+-doped fiber lasers can be used as the excitation source. By crystal-field engineering of the embedded NCs through cation- or anion-substitution, the emission properties of Co2+ including its emission peak wavelength and bandwidth can be tailored in a broad spectral range. The phenomena can be accounted for by crystal-field theory. Such nano-ChG composites, perfectly filling the 3–4 μm spectral gap between the oscillations of Cr2+ and Fe2+ doped IIVI ChG crystals, may find important MIR photonic applications (e.g., gas sensing), or can be used directly as an efficient pump source for Fe2+: IIVI crystals which are suffering from lack of pump sources.  相似文献   
3.
Sample pathwise numerical integration of noise-driven engineering dynamical systems cannot generally be performed beyond a limited level of accuracy, especially when the noise processes are modelled using (filtered) white noises. Recently, a locally transversal linearization (LTL) strategy has been proposed by the author (Proc Roy Soc London A 2001; 457 :539–566) for direct integration of deterministic and stochastic non-linear dynamical systems. The present effort is focussed on a host of extensions along with detailed theoretical error analyses of the linearization approach, especially as applied to problems in non-linear stochastic engineering dynamics. Thus, to begin with, estimates of local and global error orders in the basic LTL scheme are obtained separately for the displacement and velocity vectors when the system is driven either by a set of additive noises or by an arbitrary combination of (independently evolving) additive and multiplicative noises. Following this, a new family of higher-order LTL schemes is proposed in order to improve upon the basic LTL method and the associated error orders are established. A stepwise implementation of the lower- and higher-order versions of the LTL method, along with certain computational aspects, is also outlined. The proposed schemes are numerically illustrated, to a limited extent, for a single degree-of-freedom (SDOF) and a two degree-of-freedom (TDOF) non-linear engineering systems under additive and/or multiplicative white noise excitations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
To confirm the reliability of the theory of phase equibria of multicomponent polymer 1/multicomponent polymer 2 systems (i.e. quasi-binary systems) and the method of computer experiment based on this theory (Brit. Polym. J., 23 (1990)285; 23 (1990)299; Polym. Int., 29 (1992)219), could point curves (CPC), two-phase volume ratios ( R ) and critical solution points (CSP) have been determined experimentally for the quasi-binary mixtures of poly(ethylene oxide) (w = 647, w/n = 1.15; w and n, the weight-average and numberaverage molecular weights, respectively) and poly(propylene oxide) (w = 2028, w/n = 1.08; and Mw = 2987, Mw/Mn = 1.13). The hydroxyl end groups of both polymers were methoxylated in advance by the Cooper & Booth method (Polymer, 18 (1977)164). The thermodynamic interaction parameter between both polymers, χ12, and the concentration dependence parameters for the above quasi-binary systems were determined by the method proposed in a previous paper (Brit. Polym. J., 23 (1990)299). CPC, R and CSP values calculated on the basis of the theory are in good agreement with the values determined experimentally.  相似文献   
5.
Using nickel-2,2′-dipyridyl complex as a template, N-vinyl-2-pyrrolidone as the metal coordination functional monomer, and ethylene glycol dimethacrylate as the crosslinker, polyvinylidene fluoride (PVDF) hollow fiber ultrafiltration membrane as the supported membrane, metal complex imprinted polymeric membranes were prepared. The association constant of template-monomer interaction in the prepolymerization solution was estimated to be 4.38 × 104 (L/mol)2 by spectrophotometric titration analysis. The attenuated total reflection Fourier transform infrared spectroscopy and scanning electron micrograph characterization indicated that the surface of the support PVDF membrane was completely coated by the imprinted polymer layer after modification. The imprinted membranes exhibited the selective permeability for the template in certain nickel acetate solution. The molecularly imprinted membranes gave higher permeation separation factors at about pH 6, whereas increasing pressure would lower the separation ability. The effects of ion concentration, cations and counterions, ligand selectivity, pH, and trans-membrane pressure were investigated and the permeation performances of the imprinted membranes could be regarded as facilitated transport mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
6.
Novel calix[4]arene‐poly(ethylene glycol) crosslinked polymer (CCP) has been synthesized by the polycondensation reaction between a ptert‐butylcalix[4]arene derivative and dihydroxyl capped poly(ethylene glycol) (DHPEG, Mn = 1000) catalyzed by neodymium tosylate. The hydrogel, consisted of 66.9% water and 33.1% CCP, can selectively extract aromatic organic molecules from aqueous solution according to the diameter of the guest molecules, which infers that the diameter of the calix[4]arene cavity is about 5.4 Å and the conformation of calix[4]arene units altered from cone conformation to 1,3‐alternate conformation during the polycondensation reaction. Furthermore, CCP can also adsorb naphthalene from gas phase, showing much higher capacity than active carbon does, which may have some potential applications in the field of separation and environment protection. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
7.
Poly(3-n-octyloxythiophene), a conjugated polymer, which possessed solubility in common organic solvents, was synthesized by electrochemical polymerization in the presence of lithium perchlorate as the supporting electrolyte and sodium dodecyl sulfate as the surfactant in an aqueous medium. Characterizations of the intermediate, monomer, and polymer were performed by NMR spectroscopy, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, and gel permeation chromatography. The process of electrochemical polymerization and the electrochemical redox behaviors were investigated by cyclic voltammetry and the potentiostatic method. A poly(3-n-octyloxythiophene) film that was deposited on a platinum electrode was found to exhibit electrochromic behaviors, and it switched electrochemically between blue–green oxidized and dark red reduced states. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
8.
Many problems in geophysics, acoustics, elasticity theory, cancer treatment, food process control and electrodynamics involve study of wave field synthesis (WFS) in some form or another. In the present work, modelling of wave propagation phenomena is studied as a static problem, using finite element method and treating time as an additional spatial dimension. In particular, WFS problems are analysed using discrete methods. It is shown that a fully finite element-based scheme is very natural and effective method for the solution of such problems. Distributed WFS in the context of two-dimensional problems is outlined and incorporation of any geometric or material non-linearities is shown to be straightforward. This has significant implications for problems in geophysics or biological media, where material inhomogeneities are quite prevalent. Numerical results are presented for several problems referring to media with material inhomogeneities and predefined absorption profiles. The method can be extended to three-dimensional problems involving anisotropic media properties in a relatively straightforward manner. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
9.
Cyber–physical systems are becoming increasingly complex. In these advanced systems, the different engineering domains involved in the design process become more and more intertwined. Therefore, a traditional (sequential) design process becomes inefficient in finding good design options. Instead, an integrated approach is needed where parameters in multiple different engineering domains can be chosen, evaluated, and optimized to achieve a good overall solution. However, in such an approach, the combined design space becomes vast. As such, methods are needed to mitigate this problem.In this paper, we show a method for systematically capturing and updating domain knowledge in the context of a co-design process involving different engineering domains, i.e. control and embedded. We rely on ontologies to reason about the relationships between parameters in the different domains. This allows us to derive a stepwise design space exploration workflow where this domain knowledge is used to quickly reduce the design space to a subset of likely good candidates. We illustrate our approach by applying it to the design space exploration process for an advanced electric motor control system and its deployment on embedded hardware.  相似文献   
10.
The isothermal sections of the Mg–Sn–Sr ternary system in the Mg-rich region at 415 and 350 °C have been determined using the scanning electron microscopy (SEM) equipped with energy dispersive X-Ray spectrometry (EDS). The existence of the MgSnSr ternary compound was confirmed in these two isothermal sections. Two new compounds, named Mg5Sn3Sr and Mg25Sn24Sr14, were found in the present work based on the SEM/EDS results. Thermodynamic optimization of the Sn–Sr binary and Mg–Sn–Sr ternary systems were carried out using the CALPHAD (CALculation of PHAse Diagrams) technique. The Modified quasi-chemical model (MQM) was used for the liquid solution which exhibits a high degree of short-range ordering behavior. The solid phases were described with the Compound energy formalism (CEF). Finally, a self-consistent thermodynamic databases for the Mg–Sn–Sr ternary system has been constructed in the present work, which can be an efficient and convenient guidance to investigate and develop the Mg-based alloys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号