首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
工业技术   13篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2015年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
DDOS(分布式拒绝服务)研究与探讨   总被引:11,自引:0,他引:11  
由于目前网络安全问题的日趋严重, DDOS( Distributed Denial of Service,分布式拒绝服务攻击)的攻击手段严重威胁 Internet的安全。文章详细地介绍了什么是 DDOS及其造成的危害,W理论上分析了其体系结构和运作情况,并实际列举了一些著名的DDOS 工具及其特点,尝试提出有关DDOS的攻击检测规则和相关的检测工具。  相似文献   
2.
在薄层复合膜(thin-film composite membrane, TFC膜)中引入无机纳米颗粒,形成薄层纳米复合膜(thin-film nanocomposite membrane, TFN膜),近几年作为反渗透膜开始应用于水处理研究。但是无机纳米颗粒在TFC膜中的性能的不稳定性和膜的机械强度等变成了突出问题。合成制备了粒径约为110 nm修饰羧基的介孔氧化硅球状纳米颗粒(MSN—COOH),并将其成功地化学键合在TFC膜的表面功能层交联网络中。与TFC膜相比,键合有MSN—COOH的TFN膜,水通量提高了56.2%,保持高脱盐率;由于单分散介孔纳米颗粒表面亲水官能团的引入,使膜表面的亲水性有很大程度提高,单分散介孔纳米颗粒在基体中的有序排列,使膜表面粗糙度降低,提高了膜的抗污染能力。与普通TFN膜相比较,具有更好的稳定性和柔韧性,可以在长时间高压过滤操作下保持稳定。  相似文献   
3.
Teriflunomide (TFN) limits relapses in relapsing–remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria.  相似文献   
4.
针对机器人设计中的牵涉学科广,交叉范围大,待选方案多的特点,结合传统层次分析法(AHP)和模糊数学理论,提出一种机器人设计方案的选择和评价的新方法.该方法建立三角模糊数判断矩阵,利用AHP的模糊扩展模型计算评价因素的权重系数,并利用三角模糊数评估各方案的单指标等级,通过递阶层次结构综合评价机器人设计方案,获得最终选择结果.仿人步行机器人选择实例证明该模型适合并能够推广.  相似文献   
5.
一种基于改进型模糊层次分析法的装备维修策略   总被引:1,自引:0,他引:1       下载免费PDF全文
针对层次分析法(Analytic Hierarchy Process,AHP)在确定权重方面存在的不足,引入三角模糊数(Triangular Fuzzy Number,TFN)以确定权重,建立新的层次分析法模型,并以实例进行了验证。通过与标准层次分析法进行比较的结果表明,改进后的层次分析法能处理决策者不确定或模糊的判断,但子元素较多时计算量大,还有待进一步优化。  相似文献   
6.
Surface accuracy directly affects the surface quality and performance of mechanical parts. Circular hole, especially spatial non-planar hole set is the typical feature and working surface of mechanical parts. Compared with traditional machining methods, additive manufacturing (AM) technology can decrease the surface accuracy errors of circular holes during fabrication. However, an accuracy error may still exist on the surface of circular holes fabricated by AM due to the influence of staircase effect. This study proposes a surface accuracy optimization approach for mechanical parts with multiple circular holes for AM based on triangular fuzzy number (TFN). First, the feature lines on the manifold mesh are extracted using the dihedral angle method and normal tensor voting to detect the circular holes. Second, the optimal AM part build orientation is determined using the genetic algorithm to optimize the surface accuracy of the circular holes by minimizing the weighted volumetric error of the part. Third, the corresponding weights of the circular holes are calculated with the TFN analytic hierarchy process in accordance with the surface accuracy requirements. Lastly, an improved adaptive slicing algorithm is utilized to reduce the entire build time while maintaining the forming surface accuracy of the circular holes using digital twins via virtual printing. The effectiveness of the proposed approach is experimentally validated using two mechanical models.  相似文献   
7.
The conversion of nitric oxide (using CNG/air as fuel/oxidizer) inside a porous medium is investigated in this study. Unlike freely propagating flames, porous burners provide a solid medium that facilitates heat exchange with the gaseous phase. The heat exchange allows the stabilization of a variety of fuel mixtures from lean to rich and with a variety of calorific values. In addition, it allows the control of the reaction zone temperature and thus the control of pollutant formation while maintaining flame stability. An experimental porous burner was designed and manufactured for this purpose. The effects of equivalence ratio and flow velocity on the flame stabilization, NOx and TFN (total fixed nitrogen) conversion ratios, and temperature profiles along the burner are investigated. In addition, numerical calculations using the PLUG flow simulator model and the GRI 3.0 kinetic mechanism reveals the key reactions which control the conversion efficiency. It was found that under slightly fuel-rich conditions (φ?1.3) NOx mostly converts to N2 with a maximum conversion ratio of 65%, while for higher equivalence ratios (φ>1.3) a large proportion of NOx converts to NH3. Results from experiments and numerical modeling showed that the temperature profile along the burner has significant effects on the NOx and TFN conversion ratios. It was also found that temperatures between 1000 and 1500 K are most desirable for NOx and TFN conversion in the porous burner. Analysis of the chemical paths for the low- and high-equivalence-ratio cases showed that the formation of nitrogen-containing species under very rich conditions (φ>1.3) is due to the increased importance of the HCNO path as compared to the HNO path. The latter is the dominant path at low equivalence ratios (φ?1.3) and leads to the formation of N2. The NO concentration in the initial mixture was found to improve the conversion by up to 20% at low equivalence ratios (φ?1.3) and to have negligible effect at higher equivalence ratios.  相似文献   
8.
This paper investigates the synthesis of graphene oxide (GO)-incorporated polyamide thin-film nanocomposite (TFN) membranes on polysulfone substrate for forward osmosis applications. The GO nanosheets were embedded into polyamide layer using different concentrations (0.05?0.2 wt%). The results represented the alteration of polyamide surface by GO nanosheets and enhancing the surface hydrophilicity by increasing the GO loading. The results showed that the water flux for 0.1 wt% GO embedded nanocomposite (TFN) membrane was 34.7 L/m2 h, representing 90% improvement compared to the thin-film composite, while the salt reverse diffusion was reduced up to 39%.  相似文献   
9.
A novel polyzwitterionic hydrogel coated mixed matrix membrane (MMM) was successfully prepared, characterized and used for Cu2+, Mn2+, and Pb2+ heavy metal ions removal from water. Hydrophilic and porous covalent organic framework (COF) nanoparticles (NP) as filler were synthesized from melamine and terephthalaldehyde, and then incorporated into polyamide (PA) thin film composite (TFC) membrane. The hydrogel coating was applied by using a tailored cross-linkable polymer system in combination with concentration polarization enabled cross-linking. The effects of COF NP loading into PA layer and polyzwitterionic hydrogel coating on the membrane morphology and separation performance were studied using different analyses. The MMM prepared with a COF NP loading of 0.02 wt/wt% in the hexane dispersion used for NP deposition during PA layer formation (leading to 0.42 g/m2) exhibited an increased pure water permeability of around 200% compared with the neat PA TFC membrane while the Mn2+ ion rejection maintained above 98%. Scanning electron microscopy surface images and zeta potential profiles showed that the hydrogel was successfully deposited on the membrane surface. Furthermore, the hydrogel coating could decrease net surface charge of membranes but did not significantly influence the heavy metal ions rejections under nanofiltration conditions. The results of filtration experiment with protein solution indicated that the hydrogel coated membranes exhibited superior antifouling property, as shown by higher flux recovery ratio after washing with water, compared with neat PA TFC membrane and not coated MMM, respectively.  相似文献   
10.
曹柬  李平  周根贵 《兵工学报》2005,26(4):566-569
针对导弹系统性能评价过程的复杂性,提出了一种基于层次分析法(AHP)和三角模糊数(TFN)理论的模型,介绍了基于该模型的具体评价过程,并结合实例进行了应用分析。研究结果表明:三角模糊数以及对数最小二乘法在AHP中的应用,使模型能有效结合定性与定量分析,充分综合群组评价意见,并针对每项评价指标都能获得意见的相对一致性程度;此外,模型结构简单规范,易于编程实现,有很强的实用性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号