首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
  国内免费   1篇
工业技术   70篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   8篇
  2017年   3篇
  2016年   2篇
  2014年   7篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1986年   1篇
排序方式: 共有70条查询结果,搜索用时 0 毫秒
1.
聚碳硅烷的分子量分布与可纺性研究   总被引:6,自引:1,他引:5  
阐述了聚碳烷的合成及其分子量分布,讨论了高低分子含量对聚碳硅烷熔点及可纺性的影响,而且提出了分子量分布的控制标准与方法。  相似文献   
2.
《Ceramics International》2020,46(5):5602-5609
SiC fibers can be obtained by the spinning, curing, and heat treatment of polycarbosilane (PCS); however, the properties of the PCS precursor must be considered to set the correct spinning conditions. Although many studies have focused on the synthesis conditions, the characterization (in particular, the structural characteristics) of PCS fibers, and the polymer itself has limitations. In this study, PCS was prepared in two steps, and the growth of the polymer with respect to the reaction conditions was analyzed. We found that PCS is formed and grown by the rearrangement and subsequent condensation reactions of polydimethylsilane (PDMS). Further, fiber formation was affected by the reaction temperature, time, and pressure. Three types of PCS were obtained under different synthetic conditions, and they were all characterized. Regardless of the structural similarity of the PCS fibers (based on the spectroscopic analysis), the polymers showed different thermal and rheological properties. Our findings will be important in improving the production of PCS fibers (and subsequent SiC fibers) with finely controlled properties.  相似文献   
3.
For the oxidation curing of polycarbosilane (PCS) fibers in air, a first-order reaction based on the weight gainw (in percentage) was approached with the kinetic equationdwldt=k(w m-w). The maximum weight gain wm was observed to be 16% under normal oxidation conditions and the activation energyE to be 79.27 kJ/mol. The numeric integration based on the kinetics provides a precise prediction of the curing degree of PCS fibers under various heating programs and conditions.  相似文献   
4.
Liquid polycarbosilane (LPCS) derived hard coatings of silicon carbide (SiC) were deposited on Inconel alloy at three different moderately high temperatures by chemical vapour deposition. The deposited films were characterized by X-ray diffractometry and Field emission scanning electron microscopy. Liquid PCS yielded a mixture of α-SiC and β-SiC during decomposition having uniform round-shaped particles of dimension around 200–300 nm without extensive cracking and few discrete shaped particles were also found to form at higher temperature (i.e. 1100 °C and 1200 °C) deposited films. The coated samples showed substantial increment in hardness and fracture toughness as compared to the uncoated sample. The fracture toughness (KIC) values of the deposited films were in the range of 6.7–10.7 MPa(m)1/2. The tribological properties and hardness of the films were also found to vary with deposition temperature. The scratch tracks of the films revealed that brittle failures occurred in all SiC coated substrates.  相似文献   
5.
The processing and mechanical behaviors of Al2O3-xwt.%SiC (x = 1, 2, 5, ASx) nano-composites prepared by the in situ synthesis of SiC from polycarbosilane (PCS) were investigated. The composites were densified by hot pressing. The microstructure and mechanical properties of the sintered composites were analyzed. The results showed that a fully dense structure was obtained when a few nano-SiC were doped and that the fracture toughness and strength were highly improved compared with those of monolithic Al2O3. The fracture toughness reached 5.1 MPa m1/2 in AS2 composite. The maximum flexural strength was 516 MPa obtained in AS1 composite.  相似文献   
6.
《Ceramics International》2021,47(19):27386-27394
In order to control the pore characteristics and macroscopical performance of porous ceramics, roles of the freeze casting parameters are the key points. Herein, aligned dendritic porous SiC was fabricated by freeze casting of PCS-camphene solutions with different solid loading, freeze front velocity, temperature gradient, and freezing temperature. Influence of these parameters on the microstructure and compressive strength of porous SiC was investigated. With increasing the PCS content, freeze temperature, freeze front velocity or temperature gradient, degree of undercooling of the camphene was increased, resulting in the formation of smaller pore size, decreased porosity and increased compressive strength. Compared to variables of freeze temperature and temperature gradient, increased freeze front velocity was more efficiency in improving the compressive strength of porous SiC, owing to the formation of smaller pore size and longer secondary dendritic crystals. Promising micron-sized porous SiC with high porosity (79.93 vol%) and satisfactory strength (15.84 MPa) was achieved for 10% PCS-camphene solution under optimized freezing conditions.  相似文献   
7.
快速烧结法制备连续碳化硅纤维   总被引:2,自引:1,他引:2  
通过熔融纺丝,不熔化处理制得连续聚碳硅烷(PCS)不熔化纤维,采用快速烧结方法制备出性能较好的连续SiC纤维。探讨了气封条件的选择,以及烧结速度对SiC纤维的组成,结构及性能的影响。结果表明,快速烧结条件下,可以实现向纤维上施加张力以及纤维的无机化转变,烧结速度加快会降低纤维的C/Si(原子比),同时有利于提高纤维的抗拉强度和热稳定性。  相似文献   
8.
李晓霞  冯春祥 《高技术通讯》2003,13(1):42-44,49
以聚碳硅烷(PCS)为先驱体;经熔融纺丝、不熔化处理和快速烧成工艺制备出性能较好的连续碳化硅(SiC)纤维。采用XPS、SEM、TG等方法对所得SiC纤维的表面结构组成和热稳定性进行了分析,并探讨了快速烧成方式下引起纤维抗拉强度降低的主要原因。结果表明:快速烧成的SiC纤维表层有富含游离碳的热解沉积物,对纤维的热稳定性产生不利影响,采用超声清洗可以将其快速除去;表层缺陷是引起SiC纤维抗拉强度下降的主要原因。  相似文献   
9.
利用加速器产生的电子束(EB)在空气中辐照聚碳硅烷(PCS),以使之形成交联结构,然后经高温热解转化成SiC陶瓷。结果表明:在辐照产物中形成了SiCSi以及SiOSi等交联结构,热解温度以及热解陶瓷产率都随辐射吸收剂量增加而明显提高。通过TGIR联用分析技术,在热解产物中检测到了低分子量PCS以及CH4等小分子化合物,在吸收剂量高于2.3MGy时,PCS主要通过析出CH4而热解成SiC。  相似文献   
10.
本文主要针对预氧化聚碳硅烷纤维的恒温烧结过程进行了基础方面的研究。采用XPS、TG -DTG -DTA、IR对预氧化聚碳硅烷原纤维进行标定 ;采用日本精密天平连续跟踪纤维质量变化情况 ,探讨了烧结过程中温度对纤维失重及收缩的影响 ;采用IR、SEM和数码相机分析了纤维恒温烧结过程中微观结构和宏观形貌的变化情况 ,并对预烧结纤维进行了二次烧结  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号