首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   9篇
  国内免费   4篇
数理化   244篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   24篇
  2012年   16篇
  2011年   8篇
  2010年   11篇
  2009年   9篇
  2008年   18篇
  2007年   15篇
  2006年   18篇
  2005年   20篇
  2004年   13篇
  2003年   16篇
  2002年   16篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
排序方式: 共有244条查询结果,搜索用时 17 毫秒
1.
Homogenous amphiphilic crosslinked polymer films comprising of poly(ethylene oxide) and polysiloxane were synthesized utilizing thiol‐ene “ click ” photochemistry. A systematic variation in polymer composition was Carried out to obtain high quality films with varied amount of siloxane and poly(ethylene oxide). These films showed improved gas separation performance with high gas permeabilities with good CO2/N2 selectivity. Furthermore, the resulting films were also tested for its biocompatibility, as a carrier media which allow human adult mesenchymal stem cells to retain their capacity for osteoblastic differentiation after transplantation. The obtained crosslinked films were characterized using differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, FTIR, Raman‐IR , and small angle X‐ray scattering. The synthesis ease and commercial availability of the starting materials suggests that these new crosslinked polymer networks could find applications in wide range of applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1548–1557  相似文献   
2.
Large melting point depressions for organic nanocrystals, in comparison with those of the bulk, were observed in an associative polymer: telechelic, pyrene‐labeled poly(dimethylsiloxane) (Py‐PDMS‐Py). Nanocrystals formed within nanoaggregates of pyrenyl units that were immiscible in poly(dimethylsiloxane). For 5 and 7 kg/mol Py‐PDMS‐Py, physical gels resulted, with melting points exceeding 40 °C and with small‐angle X‐ray scattering peaks indicating that the crystals were nanoconfined, were 2–3 nm long, and contained roughly 18–30 pyrenyl dye end units. In contrast, 30 kg/mol Py‐PDMS‐PY was not a gel and exhibited no scattering peak at room temperature; however, after 12 h of annealing at ?5 °C, multiple melting peaks were present at 5–30 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3470–3475, 2004  相似文献   
3.
3‐Miktoarm star copolymers, 3μ‐D2V, with two poly(dimethylsiloxane) (PDMS) and one poly(2‐vinylpyridine) (P2VP) arm, were synthesized by using anionic polymerization–high vacuum techniques and (chloromethylphenylethyl)methyl dichlorosilane, heterofunctional linking agent, with two SiCl groups and one CH2Cl group. The synthetic strategy involves the selective reaction of the two ? SiCl groups with PDMSOLi living chains, followed by reaction of the remaining chloromethyl group with P2VPLi. Combined molecular characterization results (size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy) revealed a high degree of structural and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 614–619, 2006  相似文献   
4.
Polyphenylsilsesquioxane (PPSQ) was incorporated into an epoxy resin to prepare organic–inorganic composites, and two strategies were adopted to afford composites with different morphologies. Phase separation induced by polymerization occurred in the physical blending system. However, nanostructured composites were obtained when a catalytic amount of aluminum triacetylacetonate was added to mediate the reaction between PPSQ and diglycidyl ether of bisphenol A (DGEBA). The intercomponent reaction significantly suppressed the phase separation on the micrometer scale. Organic–inorganic composites with different morphologies displayed quite different thermomechanical properties. Both differential scanning calorimetry and dynamic mechanical analysis showed that the nanostructured composites possessed higher glass‐transition temperatures than the phase‐separated composites with the same loading of PPSQ, although the intercomponent reaction between PPSQ and DGEBA reduced the crosslinking density of the epoxy matrix. This result was ascribed to the presence of nanosized PPSQ domains in the nanostructured composites, which acted as physical crosslinking sites and thus reinforced the epoxy networks. The nanoreinforcement of the PPSQ domains afforded the enhanced dynamic storage modulus for the nanostructured composites in comparison with the phase‐separated composites with a PPSQ concentration less than 15 wt %. In terms of thermogravimetric analysis, the organic–inorganic composites displayed improved thermal stability and flame retardancy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1093–1105, 2006  相似文献   
5.
A laboratory‐scale continuous reaction system using a stirred tank reactor was assembled in our laboratory to study the dispersion polymerization of vinyl monomers in supercritical carbon dioxide (scCO2). The apparatus was equipped with a suitable downstream separation section to collect solid particles entrained in the effluent stream from the reactor, whose monomer concentration could be measured online with a gas chromatograph. The dispersion polymerization of methyl methacrylate in scCO2 was selected as a model process to be investigated in the apparatus. The experiments were performed at 65 °C and 25 MPa with 2,2′‐azobisisobutyronitrile as the initiator and a reactive polysiloxane macromonomer as a surfactant to investigate the effect of the mean residence time of the reaction mixture on the monomer conversion, polymerization rate, polymer molecular weight, and particle size distribution. The results were compared with those obtained in batch polymerizations carried out under similar operative conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4122–4135, 2006  相似文献   
6.
Summary The chromatographic performance of newly developed dicyanobiphenyl polysiloxane stationary phases were evaluated and compared with the performance of other polar stationary phases, including the previously reported monocyanobiphenyl polysiloxanes. Due to the unique combination of polarizable biphenyl and polar cyano functionalities in the side chains of the flexible polysiloxane backbone, and by virtue of their mild liquid crystalline properties, the new stationary phases provide excellent resolution of a wide variety of analytes, both polar and nonpolar, in both GC and SFC. They can be easily coated and cross-linked in open tubular columns, and the resultant columns demonstrate excellent efficiency and performance at temperatures up to 280–300°C. The new stationary phases exhibit enhanced selectivities for various types of isomeric compounds.  相似文献   
7.
In comparison to the corresponding single-component counterparts, core/shell particles are widely used due to their better physical and chemical properties. The surface properties of core/shell particles evidently play an important role in the process of application. It is easy to deduce that surface properties mostly depend on the properties of the component in the shell. Therefore, desirable materials of shell are very significant for the study of composite materials, especially in core/shell field. It is well known that polysiloxane has excellent properties, such as the water repellency, high flexibility, low surface energy, and biocompatibility. Its application, however, is limited due to poor cohesiveness and poor film-forming properties. Recently, much endeavor has been made to overcome such flaws. It is found that polyacrylate is commonly considered for its good cohesiveness and excellent film-forming property. The combination of polysiloxane and polyacrylate has been shown to be important in the composite material field, especially as core/shell particles. Unfortunately, their hydrophobicity is considerably different and thus, the core/shell particles consisting of polyacrylate (PA)/polysiloxane (PSi) are hard to prepare by general seeded emulsion polymerization, and are also scarcely available in the literature. In this study, the new core/shell PA/PSi particles with poly(butyl methacrylate) (PA) as the core and poly(3-(methacryloxypropyl)-trimethoxysilane) (PSi) as the shell were prepared by dispersion polymerization under the kinetically controlled conditions. The characterization of the particles by TEM, DSC, particle size analyzer as well as static contact angle confirmed the formation of core/shell structure. The application of core/shell (PA/PSi) particles also has been considered and discussed here.TEM micrographs of core/shell (PA/PSi) particles.  相似文献   
8.
It is shown that insertion in methacrylic polymers of bulky electron donor/acceptor side-groups with taper-shaped flourinated tails promotes a self-organization of the respective side-chain polymers due to the space demands of the bulky D/A side-groups, leading to a columnar hexagonal mesophase. The presence of an Lc-phase is evidenced by DSC and identified by X-ray analysis. The orientation in the respective copolymers and polymer blends is additionally improved by the CT-interaction between the D/A side-groups. An increased packing effect due to this CT-orientation effect is evidenced in DSC by an increase of the respective transition temperatures. CT-interaction is responsible as well for a preferential polymerization of monomeric D/A-complexes leading to copolymers of alternating structures and for a zip-like arrangement along the main chain of the A/D-complexes between the interacting side-groups in polymer blends. Formation of mesophases is even observed in CT-interacting blends between the Lc-D/A side-chain polymethacrylates and the respective amorphous D/A side-chain polysiloxanes.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
9.
We examine the influence of structural imperfections on mechanical damping in polydomain smectic main-chain liquid crystalline elastomers (MCLCE) subjected to small strain oscillatory shear. The mechanical loss factor tan δ = G″(ω)/G′(ω) exhibits a strong maximum (tan δ ≈ 1.0) near the smectic-isotropic (clearing) transition. “Optimal” elastomers that exhibit minimal equilibrium swelling in a good solvent are compared with highly swelling “imperfect elastomers” that contain higher concentrations of structural imperfections such as pendant chains. For the imperfect elastomers, tan δ is markedly enhanced in the isotropic state because of relaxation of pendant chains and other imperfections. However, within the smectic state, the magnitude of tan δ and its temperature dependence are similar for optimal and imperfect elastomers at ω = 1 Hz. The prominent loss peak near the clearing transition arises from segment-level relaxations that are insensitive to the details of chain connectivity. Smectic MCLCE can be tailored for applications as vibration-damping materials by manipulating the clearing transition temperature through the backbone structure or by deliberate introduction of structural imperfections such as pendant chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3267–3276, 2007  相似文献   
10.
Unsaturated perfluoroalkyl esters derived from undecylenic acid: CH2?CH? (CH2)8? COO? CH2? CH2? RF (with RF?C6F13, 2a and RF?C8F17, 2b ) and C8F17? (CH2)10? COO? CH2? CH?CH2, 2c were prepared with excellent yields. Their hydrosilylation by methylhydrodimethylsiloxane copolymers of various Si? H contents gives new fluorinated polysiloxanes which were examined by 1H- and 13C-NMR, GPC, differential scanning calorimetry, and optical polarizing microscopy. Polymers derived from compounds 2a and 2b exhibit mesomorphic structures. © 1994 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号