首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   75篇
  国内免费   16篇
数理化   310篇
  2024年   2篇
  2023年   7篇
  2022年   14篇
  2021年   16篇
  2020年   35篇
  2019年   17篇
  2018年   5篇
  2017年   12篇
  2016年   16篇
  2015年   10篇
  2014年   9篇
  2013年   15篇
  2012年   21篇
  2011年   16篇
  2010年   6篇
  2009年   13篇
  2008年   9篇
  2007年   7篇
  2006年   21篇
  2005年   10篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有310条查询结果,搜索用时 15 毫秒
1.
Antimonide-based superlattices dedicated to the elaboration of opto-electronic devices have been studied by X-ray scattering techniques. In particular, specular and non-specular X-ray reflectometry experiments have been performed on two MBE-samples elaborated with different shutter sequences at the interfaces. The results have shown a limitation of the incorporation of Sb species in the subsequent InAs layer for one of the samples, as expected.Then, a study on a InGaAs-cap layer/(InGaAs/AlAsSb)N superlattice grown on a InGaAs/InP buffer layer by both specular X-ray reflectometry and High resolution X-ray diffraction is reported. In particular, the results have revealed the presence of a highly disturbed thin-layer on top of the MOVPE-made GaInAs, whose presence has been explained by In-concentration modification during the desoxidation procedure at the surface of the MOVPE-made GaInAs.Beside the results on the Sb-based heterostructures, the use of X-ray scattering metrology as a routinely working non-destructive testing method has been emphasized.  相似文献   
2.
A combined method for structural characterization of strained epitaxial heterostructures involving different techniques such as Rutherford backscattering spectrometry (RBS), multiple crystal X-ray diffractometry (MCD) and transmission electron microscopy (TEM) is presented. In order to obtain a complete characterization of the analysed structure, three different quantities are measured independently: the epilayer thickness, the density of misfit dislocations which may appear at the interface, and the significant components of the strain tensor, mainly the tetragonal distortion, affecting the epilayer lattice. In this way the thermodynamic state and the mechanisms of plastic deformation of the structures can be fully investigated. In this contribution we present and discuss the experimental results concerning a set of InP/GaAs samples having different layer thicknesses ranging from 5 to 500 nm. The thickness of the samples has been determined by RBS. Measurements of in-plane strain and tetragonal distortion have been performed by MCD and RBS-channelling respectively, finally TEM has been used for determining the defects densities and distribution.  相似文献   
3.
The optical properties of two-dimensional (2D) perovskites recently receive numerous research focus thanks to the strong quantum and dielectric confinement effects. In addition to the strong excitonic effect at room temperature, 2D perovskites also have appealing features that their optical properties can be flexibly tuned by alternating organic or inorganic layers. Particularly, 2D chiral perovskites and 2D perovskites based heterostructures are emerging as new platforms to extend their functionalities. To optimize performance of 2D perovskites-based optoelectronic devices, it is critical to understand the fundamentals and explore the strategies to engineer their optical properties. This review begins with an introduction to the excitons and self-trapped excitons of 2D perovskites. Subsequently, inorganic/organic layer effects on optical properties and 2D perovskites based heterostructures are discussed. We also discussed the nonlinear optical properties of 2D perovskite. We are looking forward to that this review can stimulate more efforts to understand and optimize the optical properties of 2D perovskites.  相似文献   
4.
5.
6.
In this paper,we present a monolithic integration of a self-protected AlGaN/GaN metal-insulator field-effect transistor(MISFET).An integrated field-controlled diode on the drain side of the AlGaN/GaN MISFET features a selfprotected function for a reverse bias.This diode takes advantage of the recessed-barrier enhancement-mode technique to realize an ultra-low voltage drop and a low turn-ON voltage.In the smart monolithic integration,this integrated diode can block a reverse bias(> 70 V/μm) and suppress the leakage current(< 5 × 10-11 A/mm).Compared with conventional monolithic integration,the numerical results show that the MISFET integrated with a field-controlled diode leads to a good performance for smart power integration.And the power loss is lower than 50% in conduction without forward current degeneration.  相似文献   
7.
8.
The chemical characterization of novel 3D architectures with nanometre‐scale dimensions is extremely challenging. The chemical composition of InGaAs/AlAs quantum wells selectively grown in SiO2 trenches, 100–300 nm wide, is studied. Combining high lateral resolution 3D ToF‐SIMS analysis and Auger measurements, the chemical composition of individual trenches was obtained confirming the uniformity of these III–V heterostructures. These results correlate well with an average approach using SIMS depth profiling. The effects of ion beam orientation on the surface topography of confined structures were highlighted. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
9.
Nano‐heterostructures have attracted great attention due to their extraordinary properties beyond those of their single‐component counterparts. This review focuses on a specific type of hybrid structures: core–shell structures. In particular, we present and discuss the recent wet‐chemical synthesis approaches for semiconductor and metallic core–shell nanostructures, and their relevant properties and potential applications in photovoltaics and catalysis, respectively.  相似文献   
10.
Photocatalysts with well‐designed compositions and structures are desirable for achieving highly efficient solar‐to‐chemical energy conversion. Heterostructured semiconductor photocatalysts with advanced hollow structures possess beneficial features for promoting the activity towards photocatalytic reactions. Here we develop a facile synthetic strategy for the fabrication of Fe2TiO5–TiO2 nanocages (NCs) as anode materials in photoelectrochemical (PEC) water splitting cells. A hydrothermal reaction is performed to transform MIL‐125(Ti) nanodisks (NDs) to Ti–Fe–O NCs, which are further converted to Fe2TiO5–TiO2 NCs through a post annealing process. Owing to the compositional and structural advantages, the heterostructured Fe2TiO5–TiO2 NCs show enhanced performance for PEC water oxidation compared with TiO2 NDs, Fe2TiO5 nanoparticles (NPs) and Fe2TiO5–TiO2 NPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号