首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   4篇
环境安全   13篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide‐ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3‐month survey and adapted a Bayesian spatially explicit capture‐recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture‐recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km2, and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions.  相似文献   
2.
Abstract: Understanding the way in which habitat fragmentation disrupts animal dispersal is key to identifying effective and efficient conservation strategies. To differentiate the potential effectiveness of 2 frequently used strategies for increasing the connectivity of populations in fragmented landscapes—corridors and stepping stones—we combined 3 complimentary methods: behavioral studies at habitat edges, mark‐recapture, and genetic analyses. Each of these methods addresses different steps in the dispersal process that a single intensive study could not address. We applied the 3 methods to the case study of Atrytonopsis new species 1, a rare butterfly endemic to a partially urbanized stretch of barrier islands in North Carolina (U.S.A.). Results of behavioral analyses showed the butterfly flew into urban and forested areas, but not over open beach; mark‐recapture showed that the butterfly dispersed successfully through short stretches of urban areas (<500 m); and genetic studies showed that longer stretches of forest (>5 km) were a dispersal barrier, but shorter stretches of urban areas (≤5 km) were not. Although results from all 3 methods indicated natural features in the landscape, not urbanization, were barriers to dispersal, when we combined the results we could determine where barriers might arise: forests restricted dispersal for the butterfly only when there were long stretches with no habitat. Therefore, urban areas have the potential to become a dispersal barrier if their extent increases, a finding that may have gone unnoticed if we had used a single approach. Protection of stepping stones should be sufficient to maintain connectivity for Atrytonopsis new species 1 at current levels of urbanization. Our research highlights how the use of complementary approaches for studying animal dispersal in fragmented landscapes can help identify conservation strategies.  相似文献   
3.
Abundance estimates are essential for assessing the viability of populations and the risks posed by alternative management actions. An effort to estimate abundance via a repeated mark‐recapture experiment may fail to recapture marked individuals. We devised a method for obtaining lower bounds on abundance in the absence of recaptures for both panmictic and spatially structured populations. The method assumes few enough recaptures were expected to be missed by random chance. The upper Bayesian credible limit on expected recaptures allows probabilistic statements about the minimum number of individuals present in the population. We applied this method to data from a 12‐year survey of pallid sturgeon (Scaphirhynchus albus) in the lower and middle Mississippi River (U.S.A.). None of the 241 individuals marked was recaptured in the survey. After accounting for survival and movement, our model‐averaged estimate of the total abundance of pallid sturgeon ≥3 years old in the study area had a 1%, 5%, or 25% chance of being <4,600, 7,000, or 15,000, respectively. When we assumed fish were distributed in proportion to survey catch per unit effort, the farthest downstream reach in the survey hosted at least 4.5–15 fish per river kilometer (rkm), whereas the remainder of the reaches in the lower and middle Mississippi River hosted at least 2.6–8.5 fish/rkm for all model variations examined. The lower Mississippi River had an average density of pallid sturgeon ≥3 years old of at least 3.0–9.8 fish/rkm. The choice of Bayesian prior was the largest source of uncertainty we considered but did not alter the order of magnitude of lower bounds. Nil‐recapture estimates of abundance are highly uncertain and require careful communication but can deliver insights from experiments that might otherwise be considered a failure.  相似文献   
4.
Fishing pressure has increased the extinction risk of many elasmobranch (shark and ray) species. Although many countries have established no‐take marine reserves, a paucity of monitoring data means it is still unclear if reserves are effectively protecting these species. We examined data collected by a small group of divers over the past 21 years at one of the world's oldest marine protected areas (MPAs), Cocos Island National Park, Costa Rica. We used mixed effects models to determine trends in relative abundance, or probability of occurrence, of 12 monitored elasmobranch species while accounting for variation among observers and from abiotic factors. Eight of 12 species declined significantly over the past 2 decades. We documented decreases in relative abundance for 6 species, including the iconic scalloped hammerhead shark (Sphyrna lewini) (?45%), whitetip reef shark (Triaenodon obesus) (?77%), mobula ray (Mobula spp.) (?78%), and manta ray (Manta birostris) (?89%), and decreases in the probability of occurrence for 2 other species. Several of these species have small home ranges and should be better protected by an MPA, which underscores the notion that declines of marine megafauna will continue unabated in MPAs unless there is adequate enforcement effort to control fishing. In addition, probability of occurrence at Cocos Island of tiger (Galeocerdo cuvier), Galapagos (Carcharhinus galapagensis), blacktip (Carcharhinus limbatus), and whale (Rhincodon typus) sharks increased significantly. The effectiveness of MPAs cannot be evaluated by examining single species because population responses can vary depending on life history traits and vulnerability to fishing pressure.  相似文献   
5.
Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture‐recapture methods. From 2006 to 2012, we sampled across 624–1026 km2 with 137–200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture‐recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood‐based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km2, abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture–recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82–90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low‐density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers in a decade.  相似文献   
6.
Abstract: Marking animals so that they are uniquely identifiable provides information that may assist conservation efforts. Nevertheless, some methods used to mark animals can be harmful. We used mathematical methods to assess the trade‐off between the impact of marking threatened species and the value of the information gained. We considered the case where 2 management strategies, each aiming to improve a species' survival rate, are implemented in an experimental phase. The results of the experiment were applied in a postexperimental management phase. We expressed the expected number of survivors in both phases mathematically, accounting for any mortality caused by the experiment, and determined the proportion of animals to mark to maximize this number. The optimal number of animals to mark increased with the number of individuals available for the experiment and with the number of individuals to be managed in the future. The optimal solution was to mark only 25% of the animals when there were 1000 individuals available for the experiment, the results were used to manage 2000 individuals, and marking caused mortality of 1%. Fewer animals were marked when there were fewer animals in either phase or when marking caused higher mortality. In the case of the Helmeted Honeyeater (Lichenostomus melanops cassidix), the optimal proportion to mark was <1 if the mortality rate was >0.15%–1%, with the threshold depending on the number of animals in the experimental and postexperimental phases. The trade‐off between gaining more information about a species and possibly harming individuals of that species by marking them is difficult to assess subjectively. We show how to determine objectively the optimal proportion of animals to mark to enhance the management of threatened species.  相似文献   
7.
Abstract: Sport‐fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark–recapture data allow researchers to assess the relative importance of survival, local recruitment, and migration to changes in population densities. I conducted a 4‐year, replicated whole‐lake experiment in the Klamath Mountains of northern California (U.S.A.) to quantify changes in population density, survival, population growth rate, and recruitment of the Cascades frog (Rana cascadae) in response to manipulations of non‐native fish populations. I compared responses of the frogs in lakes where fish were removed, in lakes in their naturally fish‐free state, and in lakes where fish remained that were either stocked annually or no longer being stocked. Within 3 years of fish removals from 3 lakes, frog densities increased by a factor of 13.6. The survival of young adult frogs increased from 59% to 94%, and realized population growth and recruitment rates at the fish‐removal lakes were more than twice as high as the rates for fish‐free reference lakes and lakes that contained fish. Population growth in the fish‐removal lakes was likely due to better on‐site recruitment of frogs to later life stages rather than increased immigration. The effects on R. cascadae of suspending stocking were ambiguous and suggested no direct benefit to amphibians. With amphibians declining worldwide, these results show that active restoration can slow or reverse the decline of species affected by fish stocking within a short time frame.  相似文献   
8.
For decades conservation biologists have proposed general rules of thumb for minimum viable population size (MVP); typically, they range from hundreds to thousands of individuals. These rules have shifted conservation resources away from small and fragmented populations. We examined whether iteroparous, long‐lived species might constitute an exception to general MVP guidelines. On the basis of results from a 10‐year capture‐recapture study in eastern New York (U.S.A.), we developed a comprehensive demographic model for the globally threatened bog turtle (Glyptemys muhlenbergii), which is designated as endangered by the IUCN in 2011. We assessed population viability across a wide range of initial abundances and carrying capacities. Not accounting for inbreeding, our results suggest that bog turtle colonies with as few as 15 breeding females have >90% probability of persisting for >100 years, provided vital rates and environmental variance remain at currently estimated levels. On the basis of our results, we suggest that MVP thresholds may be 1–2 orders of magnitude too high for many long‐lived organisms. Consequently, protection of small and fragmented populations may constitute a viable conservation option for such species, especially in a regional or metapopulation context. Reexaminando el Concepto de Población Mínima Viable para Especies Longevas Resumen  相似文献   
9.
Assessing the effects of diseases on wildlife populations can be difficult in the absence of observed mortalities, but it is crucial for threat assessment and conservation. We performed an intensive capture‐mark‐recapture study across seasons and years to investigate the effect of chytridiomycosis on demographics in 2 populations of the threatened common mist frog (Litoria rheocola) in the lowland wet tropics of Queensland, Australia. Infection prevalence was the best predictor for apparent survival probability in adult males and varied widely with season (0–65%). Infection prevalence was highest in winter months when monthly survival probabilities were low (approximately 70%). Populations at both sites exhibited very low annual survival probabilities (12–15%) but high recruitment (71–91%), which resulted in population growth rates that fluctuated seasonally. Our results suggest that even in the absence of observed mortalities and continued declines, and despite host–pathogen co‐existence for multiple host generations over almost 2 decades, chytridiomycosis continues to have substantial seasonally fluctuating population‐level effects on amphibian survival, which necessitates increased recruitment for population persistence. Similarly infected populations may thus be under continued threat from chytridiomycosis which may render them vulnerable to other threatening processes, particularly those affecting recruitment success. Quitridiomicosis y Mortalidad Estacional de Ranas Asociadas a Arroyos Tropicales Quince Años Después de la Introducción de Batrachochytrium dendrobatidisvsp  相似文献   
10.
Abstract: Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture–recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31–42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5–7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low‐level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号