首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   75篇
  国内免费   8篇
环境安全   218篇
  2025年   1篇
  2024年   5篇
  2023年   2篇
  2022年   5篇
  2021年   8篇
  2020年   8篇
  2019年   1篇
  2018年   7篇
  2017年   9篇
  2016年   8篇
  2015年   5篇
  2014年   11篇
  2013年   40篇
  2012年   11篇
  2011年   8篇
  2010年   5篇
  2009年   1篇
  2008年   11篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   11篇
  2003年   2篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1982年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
1.
In 1988, the Iowa Department of Natural Resources, along withthe University of Iowa, conducted the Statewide Rural WellWater Survey, commonly known as SWRL. A total of 686private rural drinking water wells was selected by use of aprobability sample and tested for pesticides and nitrate. A subsetof these wells, the 10% repeat wells, were additionally sampledin October, 1990 and June, 1991. Starting in November, 1991,the University of Iowa, with sponsorship from the United StatesEnvironmental Protection Agency, revisited the 10% repeat wellsto begin a study of the temporal variability of atrazine and nitratein wells. Other wells, which had originally tested positive foratrazine in SWRL but were not in the 10% population, wereadded to the study population. Temporal sampling for a year-long period began in February of 1992 and concluded in Januaryof 1993. All wells were sampled monthly, a subset was sampledweekly, and a second subset was sampled for 14 day consecutiveperiods. Of the 67 wells in the 10% population tested monthly,7 (10.4%) tested positive for atrazine at least once during theyear, and 3 (4%) were positive each of the 12 months. Theaverage concentration in the 7 wells was 0.10 µg/L. Fornitrate, 15 (22%) wells in the 10% repeat population monthlysampling were above the Maximum Contaminant Level of 10 mg/L at least once. This paper, the second of two papers on thisstudy, describes the analysis of data from the survey. The firstpaper (Lorber et al., 1997) reviews the study design, theanalytical methodologies, and development of the data base.  相似文献   
2.
A study was carried out in a part of Palar and Cheyyar river basin to evaluate the current status of iron, manganese, zinc and atrazine concentrations, their origin and distribution in groundwater. Groundwater samples were collected during post-monsoon (March 1998 and February 1999) and pre-monsoon (June 1999) periods from 41 sampling wells distributed throughout the study area. The groundwater samples were analyzed for trace metals using AAS and atrazine using HPLC. The concentration of the trace elements in groundwater is predominant during pre-monsoon period. Distribution pattern indicates that the concentration of these elements increases from west to northeast and towards Palar river. Lower concentrations in the central part may be due to recharge of fresh water from the lakes located here. During most of the months, as there is no flow in Palar river, the concentrations of trace elements in groundwater are high. Drinking water standards indicate that Mn and Zn cross the permissible limit recommended by EPA during the pre-monsoon period. A comparison of groundwater data with trace element chemistry of rock samples shows the abundance of trace elements both in the rock and water in the order of Fe > Mn > Zn and Fe > Zn > Mn. This indicates that iron in groundwater is derived from lithogenic origin. Further, Fe, Mn and Zn have good correlation in rock samples, while it is reverse in the case of water samples, indicating the non-lithogenic origin of Mn and Zn. Atrazine (a herbicide) was not detected in any of the groundwater samples in the study area, perhaps due to low-application rate and adsorption in the soil materials.  相似文献   
3.
The inputs of atrazine and alachlor herbicides to surface and ground waters from irrigated areas dedicated to corn cultivation in the Castilla-León (C-L) region (Spain) as related to the application of both herbicides were studied. Enzyme-linked immunosorbent assays (ELISA) were used for monitoring the atrazine and alachlor concentrations in 98 water samples taken from these areas. Seventy-nine of the samples were of ground waters and 19 were of surface waters. The concentration ranges of the herbicides detected in the study period (October 1997–October 1998) were 0.04–25.3 g L–1 in the surface waters and 0.04–3.45 g L–1 in the ground waters for atrazine, and 0.06–31.9 g L–1 in the surface waters and 0.05–4.85 g L–1 in the ground waters in the case of alachlor. The highly significant correlation observed between the concentrations of both herbicides in the surface waters (r = 0.89, p < 0.001) pointed to a parallel transport of atrazine and alachlor to these waters. A study was made of the temporal evolution of the concentrations of both herbicides, and it was found a maximum recharge of atrazine in the ground waters for April 1998 and of alachlor in October 1997 and October 1998. The temporal evolution of the concentrations of both herbicides in surface waters was parallel. The highly significant correlations observed between atrazine concentrations determined by ELISA and by HPLC (r = 0.92, p < 0.001) and between alachlor concentrations also determined by both methods (r = 0.96, p < 0.001) confirmed the usefulness of ELISA for monitoring both herbicides in an elevated number of samples. Using HPLC, the presence in some waters of the alachlor ethanesulfonate (ESA) metabolite was found at a concentration range of 0.52–4.01 g L–1. However the interference of ESA in the determination of alachlor by ELISA was negligible. The inputs of atrazine and alachlor to waters found in this study, especially the inputs to ground waters, could pose a risk for human health considering that some waters, though sporadically, are even used for human consumption.  相似文献   
4.
Zero-valent iron nanoparticles (nZVI, diameter < 90 nm, specific surface area = 25 m2 g?1) have been used under anoxic conditions for the remediation of pesticides alachlor and atrazine in water. While alachlor (10, 20, 40 mg L?1) was reduced by 92–96% within 72 h, no degradation of atrazine was observed. The alachlor degradation reaction was found to obey first-order kinetics very closely. The reaction rate (35.5 × 10?3–43.0 × 10?3 h?1) increased with increasing alachlor concentration. The results are in conformity with other researchers who worked on these pesticides but mostly with micro ZVI and iron filings. This is for the first time that alachlor has been degraded under reductive environment using nZVI. The authors contend that nZVI may prove to be a simple method for on-site treatment of high concentration pesticide rinse water (100 mg L?1) and for use in flooring materials in pesticide filling and storage stations.  相似文献   
5.
A molecularly imprinted polymer (MIP) for atrazine was synthesized by non-covalent method. The binding capacity of MIP was 1.00 mg g? 1 polymer. The selectivity and recovery were investigated with various pesticides which are mostly, found in the environment, for both similar and different chemical structure of atrazine. The competitive recognition between atrazine and structurally similar compounds was evaluated and it was found that the system provided highest recovery and selectivity for atrazine while low recovery and selectivity were obtained for the other compounds. The highest recovery was obtained from MIP compared with non-imprinted polymer (NIP), a commercial C18 and a granular activated carbon (GAC) sorbent. The method provided high recoveries ranged from 94 to 99% at two spiked levels with relative standard deviations less than 2%. The lower detection limit of the method was 80 ng L? 1. This method was successfully applied for analysis of environmental water samples.  相似文献   
6.
Appendix     
Abstract

An atrazine‐degrading bacterial isolate (M91–3) was able to utilize simazine and cyanazine as N sources for glucose‐dependent growth. The degradation of these three 5‐triazine herbicides was also investigated in binary and ternary mixtures. The organism used atrazine and simazine indiscriminately, whereas cyanazine degradation was slow and delayed until the depletion of the two other herbicides. There was no apparent effect of other commonly used herbicides on the rate of atrazine degradation by M91–3.  相似文献   
7.
陈建军  张坤  祖艳群  李元 《生态环境》2011,20(11):1753-1757
通过盆栽试验探讨了种植皇竹草(Pennisetum hydridum)对阿特拉津污染土壤的修复效果,阿特拉津对皇竹草生长的影响,以及皇竹草对土壤微生物数量的影响,以期为阿特拉津污染土壤的植物修复提供参考。结果表明:在≤200 mg.kg-1质量分数范围以内,种植皇竹草对土壤阿特拉津的初期降解效率比对照明显提高,最大提高了29.64%,达到显著或极显著差异;阿特拉津质量分数在≤200 mg.kg-1范围内对皇竹草株高没有影响,≤50 mg.kg-1质量分数范围内对生物量没有影响,根冠比变化不明显;随阿特拉津质量分数的增加皇竹草根际和非根际土壤中的细菌、真菌、放线菌数量均呈先增加后减少的趋势,在质量分数为100 mg.kg-1时达到最大,根际土壤中细菌和放线菌数量明显高于非根际土壤,真菌数量在根际与非根际土壤中变化不明显。说明种植皇竹草有助于阿特拉津降解效率的提高,且与种植皇竹草后改变了土壤微生物数量及皇竹草的生长状况有关。  相似文献   
8.
微生物对地下水及土壤中阿特拉津降解的研究   总被引:4,自引:0,他引:4  
从吉林市农药厂采集的污泥样品中筛选出降解阿特拉津(AT)能力较高的菌-JLNY01,JLNY02,通过条件实验表明,JLNY01在pH=6左右,此菌在10℃条件下,一定时间内驯化降解率可达83.6%,30℃时,6天内可达到对AT的完全降解,证明温度越高降解效果越好,JLNY02可直接在低温条件下进行降解,其降解率可达81.8%,而在高温条件下降解率仅达31.4%,证明此菌是一种嗜冷菌。  相似文献   
9.
    
This is the first study regarding the pharmacokinetics of [14C]-atrazine conducted with rhesus monkeys. The animals received one dose (0.25 mg) intravenously (IV) or three doses (1, 10, or 100 mg) orally. Plasma, urine, and feces were collected at defined times up to 7 days post-dosing. Sample radioactivity was measured to determine the mass equivalent. IV administered [14C]-atrazine disappeared rapidly from blood, with an elimination half-life of about 5.5 ± 1.1 h. The pharmacokinetic profiles of [14C]-atrazine following oral administration at the three dose levels show that kinetic parameters such as AUC and C max are linearly correlated with the dose. Seven days after dosing, urinary and fecal excretion of [14C]-atrazine reached 99% of total administered dose in the IV group and 91–95% in the three oral dose groups. In the IV-administered monkeys, approximately 85% of the dose was excreted in urine and 12% in feces. In three oral dose groups, urinary and fecal radioactivity recoveries approximated 57% and 21%, 58% and 25%, and 53% and 35%, respectively. More than 50% of the total urinary excreted radioactivity was found within the first 24 h after dosing. In conclusion, the principal elimination of [14C]-atrazine, IV and orally administered, is via urine. The oral bioavailability was 60% or higher. There was a significant linear correlation between administered oral dose and plasma concentration. Overall oral dose accountability ranged from 91% to 95%. Data generated may be useful in the risk assessment of human exposure to environmental atrazine contamination.  相似文献   
10.
阿特拉津(atrazine,ATZ)等有机杀虫剂的大量生产和使用对水生态安全造成威胁,其可被电化学阳极氧化技术有效降解和矿化.为探究水中ATZ电化学降解效率、能耗与反应路径,以多孔钛网为基板制备Ti/RuO2-IrO2、Ti/PbO2、Ti/Ti4O7钛网阳极,开展电化学降解和矿化水中ATZ研究,分析了 3种钛网阳极表面结构特征和电化学性能;比较和评估3种钛网阳极电化学降解ATZ效率、溶液总有机碳(TOC)去除率、反应能耗;考察了电流密度、ATZ初始质量浓度、溶液初始pH等反应参数对ATZ降解效率的影响;探究了 ATZ电化学降解中间产物及反应路径.结果表明:Ti/RuO2-IrO2、Ti/PbO2、Ti/Ti4O7钛网阳极表面活性组分覆盖致密、均匀,其电析氧电位为Ti/Ti4O7(2.4 V)>Ti/PbO2(1.98 V)>Ti/RuO2-IrO2(1.48 V);3种钛网阳极电化学降解和矿化ATZ效率较高,ATZ的降解率和溶液TOC去除率分别为85.45%~96.3%和48.7%~69.8%,其中Ti/Ti4O7钛网阳极对ATZ和TOC去除率可达96.3%和69.8%;与Ti/RuO2-IrO2和Ti/PbO2相比,Ti/Ti4O7稳定性较好,反应能耗(221.4 kWh·kg-1)较低;ATZ电化学降解率随电流密度增大而升高、随ATZ初始质量浓度和溶液初始pH的增大而降低;水中ATZ电化学降解产生A(C8H15N5O,m/z=198.24),A 继续氧化生成 B(C8H15N5O2,m/z=214.22)、C(C7H13N5O3,m/z=216.20)、D(C6H10N4O3,m/z=187.20)、E(C3H3N3O4,m/z=146.07)、F(C3H3N3O5,m/z=162.07)等中间产物.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号