全文获取类型
收费全文 | 689篇 |
免费 | 132篇 |
国内免费 | 3篇 |
学科分类
地球科学 | 824篇 |
出版年
2025年 | 2篇 |
2024年 | 25篇 |
2023年 | 8篇 |
2022年 | 17篇 |
2021年 | 38篇 |
2020年 | 48篇 |
2019年 | 35篇 |
2018年 | 33篇 |
2017年 | 43篇 |
2016年 | 32篇 |
2015年 | 31篇 |
2014年 | 38篇 |
2013年 | 64篇 |
2012年 | 39篇 |
2011年 | 30篇 |
2010年 | 25篇 |
2009年 | 37篇 |
2008年 | 30篇 |
2007年 | 17篇 |
2006年 | 16篇 |
2005年 | 26篇 |
2004年 | 31篇 |
2003年 | 7篇 |
2002年 | 18篇 |
2001年 | 20篇 |
2000年 | 25篇 |
1999年 | 17篇 |
1998年 | 10篇 |
1997年 | 18篇 |
1996年 | 9篇 |
1995年 | 9篇 |
1994年 | 4篇 |
1993年 | 1篇 |
1992年 | 4篇 |
1991年 | 4篇 |
1990年 | 4篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1984年 | 2篇 |
排序方式: 共有824条查询结果,搜索用时 25 毫秒
1.
The reservoir quality of Jurassic and Triassic fluvial and lacustrine-deltaic sandstones of the Yanchang Oil Field in the Ordos Basin is strongly influenced by the burial history and facies-related diagenetic events. The fluvial sandstones have a higher average porosity (14.8%) and a higher permeability (12.7×10?3 ?m2) than those of the deltaic sandstones (9.8% and 5.8 ×10?3 ?m2, respectively). The burial compaction, which resulted in 15% and 20% porosity loss for Jurassic and Triassic sandstones, respectively, is the main factor causing the loss of porosity both for the Jurassic and Triassic sandstones. Among the cements, carbonate is the main one that reduced the reservoir quality of the sandstones. The organic acidic fluid derived from organic matter in the source rocks, the inorganic fluid from rock-water reaction during the late diagenesis, and meteoric waters during the epidiagenesis resulted in the formation of dissolution porosity, which is the main reason for the enhancement of reservoir-quality. 相似文献
2.
3.
河流沉积对于气候和海平面变化响应的讨论 总被引:2,自引:0,他引:2
河流沉积地层是古代陆相沉积和大陆边缘沉积的重要组成部分。河流沉积与气候和海平面升降之间的关系虽然研究较多,但是众多的研究集中于河流沉积与相对海平面之间的变化,而研究河流沉积与气候的关系则集中于对近100Ma年以来的河流沉积,而对古代河沉积与气候之间的变化关系研究较少。本文拟对河流沉积与海平面变化和气候变化的响应进行一些讨论。 相似文献
4.
Phillip H. Larson Ronald I. Dorn R. Evan Palmer Zack Bowles Emma Harrison Scott Kelley 《自然地理学》2014,35(5):369-389
The Sonoran Desert portion of the Basin and Range physiographic province contains a number of streams that now flow across once-closed basins. We explore here the research questions of if and how granitic rock pediments respond to the transition from rimming endorheic basins to bordering through-flowing streams. Granitic rock pediments of the northern Usery and eastern McDowell Mountains once graded to the closed Miocene–Pliocene Pemberton basin that occupied the present-day location of the confluence of the Salt and Verde Rivers. The process of lake overflow, which integrated these rivers, first aggraded fill terraces that, in turn, caused aggradation of a mantle of transported grus on bedrock pediments. Subsequent episodic incision of the Salt and Verde rivers lowered the base level; this led to the development of erosional features such as rolling topography of a degrading pediment mantle; exposure of the former piedmont angle and its associated zones of enhanced bedrock decay and regolith carbonate; and exposure of spheroidally weathered bedrock and emerging tors, some of which experienced 20th century erosion. The granitic pediments of the former Pemberton Basin, which now transport grus to the Salt and Verde rivers, have actively adjusted to aggradational and degradational events associated with drainage integration and do not appear to be inherited from an ancient wet climatic interval. 相似文献
5.
Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10 disturbed from 13 undisturbed reaches with 90 per cent and 92 per cent correct classification respectively. These variables are the total number of pools per reach, the ratio of mean residual pool depth to mean bankfull depth, and the ratio of critical shear stress of the median surface grain size to bankfull shear stress. The last variable can be dropped without a decrease in rate of correct classification; however, the resulting two-variable model may be less robust. Analysis of the distribution of channel units, including pool types, can also be used to discriminate disturbed from undisturbed reaches and is particularly useful for assessment of aquatic habitat condition. However, channel unit classification and inventory can be subject to considerable error and observer bias. Abundance of pool-related large woody debris is highly correlated with pool frequency and is an important factor determining channel morphology. Results of this study yield a much needed, objective, geomorphic discrimination of pristine and disturbed channel conditions, providing a reference standard for channel assessment and restoration efforts. 相似文献
6.
In a multi‐scale approach to the study of the organic and mineral components in an active barrage‐type tufa system of southern Italy, neo‐formed deposits, in both natural depositional sites and on inorganic substrates placed in the stream for this study, were observed and compared through one year of monitoring. Dams and lobes representing the basic morpho‐facies of the deposits are composed of two depositional facies: vacuolar tufa (a mixture of phytoclastic and framestone tufa) and stromatolitic tufa (phytoherm boundstone tufa). Three petrographic components comprise both facies: micrite and microsparite, often forming peloidal to aphanitc, laminar and dendrolitic fabrics, and sparite, which occurs as isolated to coalescent fan‐shaped crystals forming botryoids or continuous crusts. All fabrics occurring in all depositional facies are organized into layers with a more or less well‐developed cyclicity, which has its best expression in stromatolitic lamination. The precipitation of all types of calcite (with Mg 1·0 to 3·2 mole % and Sr 0·5 to 0·8 mole %) takes place more or less constantly during all seasons, in spite of the low saturation state of the water (the saturation index range is 0·75 to 0·89) within the active depositional zone; the latter extends for a few hundred microns through the external surface of the deposit. The active depositional zone has a particular micro‐morphology composed of porous micro‐columns (50 to 150 μm in size), separated by interstitial channels. Mineral precipitation occurs upon both external surfaces and within internal cavities of the micro‐columns, while further point sites of precipitation occur suspended within the masses of cyanobacterial tufts. Sub‐spherical mineral units, ‘nano‐spheres’ (10 to 20 nm in diameter) are the basic biotic neo‐precipitate; they commonly form by replacing non‐living degrading organic matter and at point sites along the external surface of living cyanobacterial sheaths. Nano‐spheres agglutinate to form first rod‐shaped aggregates (100 to 200 nm) which then evolve into triads of fibres or polyhedral structures. Successively, both triads and polyhedral solids coalesce to form larger calcite crystals (mainly tetrahedrons tens of microns in size) that represent the fundamental bricks for the construction of the micro‐columns in the active depositional zone. Precipitation is attributed to the presence of a widespread biofilm that occurs in the active depositional zone; this is composed of a heterogeneous community comprising epilithic and endolithic filamentous cyanobacteria, green algae, unicellular prokaryotes, actinobacteria and fungi, with a variable amount of extracellular polymeric substances. No precipitation takes place where the biofilm is absent, indicating that the biological activities of the biofilm are crucial, with its living organisms and non‐living organic matter. Basic aggregates of neo‐precipitates do not form in association with any one particular type of organic matter substrate, but appear to be related to the seasonal temperature variation: polyhedral micro‐crystals mainly precipitate in the colder season, short triads in the intermediate seasons, and long triads in the warmest conditions. These three basic crystal aggregates have a petrographic counterpart, respectively, in the spar, microspar and micrite. 相似文献
7.
Carl J. Legleiter 《地球表面变化过程与地形》2012,37(5):499-518
This study developed and evaluated a hybrid approach to remote measurement of river morphology that combines LiDAR topography with spectrally based bathymetry. Comparison of filtered LiDAR point clouds with surveyed cross‐sections indicated that subtle features on low‐relief floodplains were accurately resolved by LiDAR but that submerged areas could not be detected due to strong absorption of near‐infrared laser pulses by water. The reduced number of returns made the active channel evident in a LiDAR point density map. A second dataset suggested that pulse intensity also could be used to discriminate land from water via a threshold‐based masking procedure. Fusion of LiDAR and optical data required accurate co‐registration of images to the LiDAR, and we developed an object‐oriented procedure for achieving this alignment. Information on flow depths was derived by correlating pixel values with field measurements of depth. Highly turbid conditions dictated a positive relation between green band radiance and flow depth and contributed to under‐prediction of pool depths. Water surface elevations extracted from the LiDAR along the water's edge were used to produce a continuous water surface that preserved along‐channel variations in slope. Subtracting local flow depths from this surface yielded estimates of the bed elevation that were then combined with LiDAR topography for exposed areas to create a composite representation of the riverine terrain. The accuracy of this terrain model was assessed via comparison with detailed field surveys. A map of elevation residuals showed that the greatest errors were associated with underestimation of pool depths and failure to capture cross‐stream differences in water surface elevation. Nevertheless, fusion of LiDAR and passive optical image data provided an efficient means of characterizing river morphology that would not have been possible if either dataset had been used in isolation. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
Sediment Phosphorus Chemistry and Microbial Biomass along a Lowland New Zealand Stream 总被引:1,自引:0,他引:1
R. W. McDowell 《Aquatic Geochemistry》2003,9(1):19-40
An evaluation of the distribution of P concentrations in streamflow, P fractions andthe microbial biomass P pool was made of bed and bank sediments along a lowlandstream in New Zealand. Agricultural intensification increased downstream. However,most P fractions decreased downstream (total P decreased from c. 400 to 250 mg kg-1) in bed sediments, while P in streamflow remained relatively constant (generally < 0.005 mg l-1) and sediment microbial P increased from 2 to 8 mg kg-1. An investigation of P release from dried and rewetted sediments showed that solution P (CaCl2-P) increased, on average > 300%, and proportional to the size of the microbial biomass P pool before drying, except in sediments with much organic carbon (OC). When supplied with a P source (1 mg l-1) and then simultaneously with a C source (glucose, 100 mg l-1), all sediment behaved similarly and biotic sorption accounted for, on average, 27 and 34% of the total sediment uptake, respectively (maximum of 58%). The quantity of P taken up was related to the initial size of the microbial biomass P pool, and the availability of P as influenced by organic P complexes and OC. The sediment microbial biomass represents a transient, but small store of P could be useful to indicate bioavailable P inputs. 相似文献
9.
10.
Shunji Ouchi 《地球表面变化过程与地形》2021,46(5):1083-1095
Four runs of experimental landform development, with the same uplift rate, different rainfall intensity, and the same material of different permeability adjusted by the degree of compaction, showed complicated effects of rainfall and mound-forming material. In the run with more rainfall on less permeable material, low separated ridges developed in the uplifted area, because abundant overland flow promoted valley erosion and slope processes from early stages. In the run with less rainfall on less permeable material, valley incision proceeded mostly in major valleys where surface water converges. Canyons developed during early stages and later a high massive mountain emerged. The effect of rainfall difference, however, appeared completely opposite on more permeable material accompanied by lower shear strength. In the run with more rainfall on more permeable material, a massive mountain similar to that with less rainfall on less permeable material appeared, and low separated ridges appeared in the run with less rainfall on more permeable material as in the run with more rainfall on less permeable material. In the former case, similar amount of water available for Hortonian overland flow in early stages estimated from rainfall rate and permeability can explain the development of similar landforms. In the latter case, while abundant surface water with more rainfall on less permeable material made fluvial erosion active from early stages, the deficiency in surface water with less rainfall on more permeable material apparently attenuated fluvial erosion but possibly accentuated slope processes and slope failures by seepage water flow through more permeable material of low shear strength. The active erosion from early stages apparently resulted in the development of enduring similar low landforms later in the dynamic equilibrium stage. These experimental results indicate that similar landforms can emerge from different environmental and lithologic controls, and that process does not necessarily follow from form. 相似文献