全文获取类型
收费全文 | 189篇 |
免费 | 50篇 |
国内免费 | 28篇 |
学科分类
地球科学 | 267篇 |
出版年
2025年 | 3篇 |
2024年 | 2篇 |
2023年 | 6篇 |
2021年 | 4篇 |
2020年 | 4篇 |
2019年 | 5篇 |
2018年 | 6篇 |
2017年 | 8篇 |
2016年 | 6篇 |
2015年 | 7篇 |
2014年 | 9篇 |
2013年 | 10篇 |
2012年 | 6篇 |
2011年 | 11篇 |
2010年 | 7篇 |
2009年 | 12篇 |
2008年 | 17篇 |
2007年 | 13篇 |
2006年 | 19篇 |
2005年 | 8篇 |
2004年 | 8篇 |
2003年 | 11篇 |
2002年 | 6篇 |
2001年 | 4篇 |
2000年 | 8篇 |
1999年 | 8篇 |
1998年 | 9篇 |
1997年 | 6篇 |
1996年 | 2篇 |
1995年 | 7篇 |
1994年 | 7篇 |
1993年 | 6篇 |
1992年 | 2篇 |
1990年 | 3篇 |
1989年 | 3篇 |
1988年 | 2篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 5篇 |
1980年 | 2篇 |
1978年 | 1篇 |
排序方式: 共有267条查询结果,搜索用时 18 毫秒
1.
Urban air pollution in Pakistan is a serious challenge and it causes significant damage to human health and ecosystems. This paper presents a modelling study using the Weather Research and Forecasting Model coupled with Chemistry(WRF-Chem) to simulate the spatial distributions and temporal variations of aerosol concentrations over Pakistan, focusing on contributions of domestic emission sectors(transport, industry, residential, and energy) to mass concentrations of sulfate(SO2–4), nitrate(NO–3), ammonium(NH+4), black carbon(BC), and organic carbon(OC) during the months of January, April, July, and October in 2010. Sensitivity studies indicate that, averaged over January, April, July, and October of 2010, energy and industry sectors have the largest contributions to SO2–4 concentrations, each of which contributes about 10%?20% to SO2– 4over the polluted eastern Pakistan. The contributions from residential and transport sectors to NO–3 concentrations reach 40%?50% in central Pakistan. The residential sector has the highest contribution of 50%–80% to BC and OC loading in northeastern and southern Pakistan. Examination of sector contributions to aerosol levels in Lahore, the most polluted city in Pakistan, suggests that reductions in emissions in the residential sector should be an efficient measure for improving particulate matter air quality in this region. 相似文献
2.
J. M. C. Plane 《Annales Geophysicae》2000,18(7):807-814
It is proposed that a component of meteoric smoke, sodium bicarbonate (NaHCO3), provides particularly effective condensation nuclei for noctilucent clouds. This assertion is based on three conditions being met. The first is that NaHCO3 is present at sufficient concentration (104 cm–3) in the upper mesosphere between 80 and 90 km. It is demonstrated that there is strong evidence for this based on recent laboratory measurements coupled with atmospheric modelling. The second condition is that the thermodynamics of NaHCO3(H2O)n cluster formation allow spontaneous nucleation to occur under mesospheric conditions at temperatures below 140 K. The Gibbs free energy changes for forming clusters with n = 1 and 2 were computed from quantum calculations using hybrid density functional/Hartree-Fock (B3LYP) theory and a large basis set with added polarization and diffuse functions. The results were then extrapolated to higher n using an established dependence of the free energy on cluster size and the free energy for the sublimation of H2O to bulk ice. A 1-dimensional model of sodium chemistry was then employed to show that spontaneous nucleation to form ice particles (n > 100) should occur between 84 and 89 km in the high-latitude summer mesosphere. The third condition is that other metallic components of meteoric smoke are less effective condensation nuclei, so that the total number of potential nuclei is small relative to the amount of available H2O. Quantum calculations indicate that this is probably the case for major constituents such as Fe(OH)2, FeO3 and MgCO3. 相似文献
3.
ABSTRACTRapid economic growth, a high degree of urbanization and the proximity of a large number of desert and semidesert landscapes can have a significant impact on the atmosphere of adjacent territories, leading to high levels of atmospheric pollution. Therefore, identifying possible sources of atmospheric pollution is one of the main tasks. In this study, we carried out an analysis of spatial and temporal characteristics of five main atmospheric pollutants (PM2.5, PM10, SO2, NO2, and CO) near potential source of natural aerosols, affecting seven cities (Wuhai, Alashan, Wuzhong, Zhongwei, Wuwei, Jinchang, Zhangye), located in immediate proximity to the South Gobi deserts. The results, obtained for the period from 1 January 2016 to 31 December 2018, demonstrate total concentrations of PM2.5 and PM10 are 38.2 ± 19.5 and 101 ± 80.7 μg/m3 exceeding the same established by the Chinese National Ambient Air Quality Standard (CNAAQS), being 35 and 70 μg/m3, respectively. Based on the data from Moderate Resolution Imaging Spectroradiometer (MODIS) for the whole period, Clean Сontinental (71.49%) and Mixed (22.29%) types of aerosols prevail in the region. In the spring and winter seasons maximum concentrations of pollutants and high values of Aerosol Optical Depth (AOD) in the region atmosphere are observed. PM2.5 and PM10 ratio shows the presence of coarse aerosols in the total content with value 0.43. The highest concentrations of pollutants were in the period of dust storms activity, when PM2.5 and PM10 content exceeded 200 and 1000 µg/m3, and AOD value exceeded 1. UV Aerosol Index (UVAI), Aerosol Absorbing Optical Depth (AAOD), and Single Scattering Albedo (SSA), obtained from Ozone Monitoring Instrument (OMI), demonstrate the high content of dust aerosols in the period of sandstorms. Analysis of backward trajectories shows that dust air masses moved from North to Northwest China, affecting large deserts such as Taklamakan, Gurbantunggut, Badain Jaran, Tengger, and Ulan Buh deserts. 相似文献
4.
R. K. R. Vupputuri 《Natural Hazards》1984,5(1):1-16
A coupled one-dimensional radiative-convective-photochemical diffusion model, which takes into account the influence of ocean inertia on global radiative perturbations is used to investigate the possible climatic and other atmospheric effects of a major volcanic eruption, thought to be similar in magnitude to that of the Tambora eruption, Indonesia, which took place in 1815. A volcanic cloud was introduced in the model stratosphere between 20–25 km and the global average peak aerosol optical thickness was assumed to be 0.25. Both the aerosol optical thickness and aerosol composition, which determine the optical properties, were allowed to vary in the model atmosphere during the life cycle of the volcanic cloud. The results indicate that the global average surface temperature decreases steadily from the date of eruption (7–12 April 1815) with maximum cooling of 1° K occurring in the spring of 1816. The calculations also show significant warming of the stratosphere, with temperature increasing up to 15° K at 25 km in less than six months after the date of eruption. The important effects of the Tambora eruption on stratospheric ozone and UV-B radiation at the surface are also mentioned. 相似文献
5.
Weekly aerosol samples were collected from March 1981 to June 1983 at the six stations in the western North Pacific region and analyzed for Ca and Na. By coupling data with those previously reported for Al (Tsunogai et al., 1985), the following results and conclusion have been obtained. There was a positive correlation between the atmospheric concentration of Al and the concentration of nonsea salt Ca (nssCa). The nssCa/Al ratios from the six stations, however, considerably varied (from 0.84±0.36 to 3.00±1.91), and the ratios were usally larger than those of the crustal average or of usual soil in Japan. The Ca/Al ratios of Asian desert soil and loess vary from 0.52 to 1.29, which are similar to the nssCa/Al ratios of aerosols in the surface air over the western North Pacific region except at Onna, Okinawa. The exception may be due to a local effect of coral. These results suggest that a large part of nonsea salt Ca in the surface air over the western North Pacific is derived from arid regions in Asia and that the nssCa/Al ratio in aerosol varies with that of the source material. 相似文献
6.
Titan's haze consists of long chain polymers of pure and N-mixed hydrocarbons (Coustenis et al., 1989, Icarus 80, 54-76, 1991, Icarus 89, 152-167). These polymers have regularly alternating (i.e., conjugated) double/single and triple/single bonds, which open either spontaneously (free aging) or under the action of some external factors (forced aging), the latter being very diverse, e.g., charging, photolysis, radiolysis, thermolysis, chemical effect of environment, etc. An essential of free aging was examined previously (Dimitrov and Bar-Nun, 2002, Icarus 156, 530-538). The main distinction between free and any forced aging is that both of them possess the same thermodynamics while different kinetics, the forced aging in any case being faster, proceeding in different pathways than the free aging. The more extensive is the list of the external effects and the more intensive they are, the faster and more variably the forced aging proceeds. In this paper we quantified the kinetics of forced aging, considering charging of Titan's aerosol population. It was found that forced aging proceeds approximately hundred times faster as compared to the free aging. Various physico-chemical properties of Titan's aerosol material, including coagulation coefficients, depending on particle size and medium conditions, were defined. The comparison of the aging rate, rate of sedimentation and rate of the particle increase proves that Titan's aerosol domain can be subdivided conditionally into two big subdomains. The upper one contains minor portion (<5%) of the total aerosol bulk, unannealed aerosol particles being fine and sticky. The lower subdomain contains the major portion (>95%) of aerosol bulk, which is completely aged, coarsely dispersed particles. We established the border between these subdomains at the altitude Z∼620 km. 相似文献
7.
Experimental study is made of the relationship between the imaginary part of refractive index (IRI) of atmospheric aerosol particles and relative humidity,and between IRI and chemical element through the assay of chemical constituents of the particles.Evidence suggests that atmospheric humidity and aerosols' chemical ingredients have great effects on the IRI's and they should thus be considered in the research of the radiation properties of the particles in the atmosphere. 相似文献
8.
《极地研究》2025,37(2)
本研究利用中国第32次南极考察采集的气溶胶样品, 应用电感耦合等离子体质谱方法分析了海洋断面和中山站至昆仑站断面上空气溶胶中6种痕量金属元素(As、Se、Cd、Sb、Hg和Pb)的浓度, 并采用主成分分析法探究了其来源。研究结果表明, 海洋断面上空气溶胶中金属元素的平均浓度由大到小依次为Se、As、Sb、Cd、Pb、Hg, 浓度均值分别为(3.24±3.2) ng·m–3、(1.61±2.44) ng·m–3、(1.37±2.4) ng·m–3、(0.51±0.94) ng·m–3、(0.16±0.53) ng·m–3、(0.1±0.14) ng·m–3; 中山站至昆仑站断面上空气溶胶中金属元素的平均浓度由大到小依次为As、Sb、Se、Hg、Pb、Cd, 浓度均值分别为(0.49±0.06) ng·m–3、(0.22±0.16) ng·m–3、(0.14±0.09) ng·m–3、(0.11±0.13) ng·m–3、(0.01±0.03) ng·m–3、(0.01±0.03) ng·m–3。海洋上空气溶胶中所观测金属元素浓度的整体分布由大到小依次为东海、西太平洋、南太平洋、南大洋。来源解析结果显示, 海洋断面气溶胶中的金属元素可能主要来自工业生产、矿石开采和船舶运输, 而南极内陆考察断面气溶胶中的金属元素主要来源于大气的远距离传输过程。 相似文献
9.
Chen Liqi ;Yu Qun ;Yang Xulin ;Tang Rongkun 《海洋湖沼学报(英文)》1993,11(4):351-359
Aerosol samples were collected with a Sierrer Model 235 cascade impactor in the marine atmosphere over the Kuroshio area in consecutive four seasons from 1987 to 1988. Na, Cl, Al, V, and water soluble and acid soluble Mn, Fe, Pb, Cu, V, Cd were determined by neutron activation analysis and atomic absorption spectrophotometry, respectively. Seawater source chemical species in the aerosols appeared in high content in large over 3.6 μm diameter particles, and crustal source vanadium appeared in 3.6 μm diameter particles, but pollution source vanadium appeared in less than 0.52 μm diameter particles. Trace metals in the aerosols mostly had the highest concentration of water soluble metals on fine particles, and acid soluble metals on large particles. The concentrations of trace metals in the aerosols were higher in autumn and winter, lower in spring and summer. 相似文献
10.
利用2010年塔克拉玛干沙漠腹地塔克拉玛干沙漠大气环境观测试验站单波段(525nm)积分浊度计和PM10自动监测仪、能见度仪器观测资料,结合塔中地面气象观测资料,分析影响塔中气溶胶散射系数的各因子。结果表明:(1)散射系数和PM10质量浓度具有明显的正相关关系,相关程度秋季最大,达0.96;夏季次之,为0.94;冬季最小,为0.91。(2)质量散射系数3月最小,10月最大;四季中,春季最小,为0.60m2·g-1,秋季最大,为1.38m2·g-1。塔中站气溶胶质量散射系数小于河北张北站、甘肃民勤站、兰州西固区,大于内蒙古锡林浩特站、希腊克里特岛、以色列内盖夫沙漠。(3)能见度与散射系数呈显著负幂相关关系,相关系数为0.80,其中夏、秋、冬季的相关系数都超过了年相关系数,分别是0.913、0.908、和0.857,春季最低为0.723。(4)风速较大时,散射系数的值也比较大,两者呈现正相关关系,相关系数为0.45。散射系数小于500 Mm-1时,主要分布于ENE和NE;大于500Mm-1以上则主要是在ENE、NE、E风向。在ESE风向时,散射系数的平均值最大,其次是SSE方向上,最小值是S风向。 相似文献