首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   19篇
  国内免费   37篇
地球科学   391篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2020年   11篇
  2019年   7篇
  2018年   9篇
  2017年   10篇
  2016年   11篇
  2015年   9篇
  2014年   8篇
  2013年   65篇
  2012年   23篇
  2011年   9篇
  2010年   9篇
  2009年   15篇
  2008年   12篇
  2007年   20篇
  2006年   8篇
  2005年   9篇
  2004年   20篇
  2003年   21篇
  2002年   11篇
  2001年   6篇
  2000年   11篇
  1999年   12篇
  1998年   7篇
  1997年   7篇
  1996年   10篇
  1995年   12篇
  1994年   6篇
  1993年   9篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   2篇
排序方式: 共有391条查询结果,搜索用时 15 毫秒
1.
The Limousin ophiolite is located at the suture zone between two major thrust sheets in the western French Massif Central. This ophiolitic section comprises mantle‐harzburgite, mantle‐dunite, wehrlites, troctolites and layered gabbros. It has recorded a static metamorphic event transforming the gabbros into undeformed amphibolites and the magmatic ultramafites into serpentinites and/or pargasite‐bearing chloritites. With various thermobarometric methods, it is possible to show that the different varieties of amphibole have registered low‐P (c. 0.2 GPa) conditions with temperature ranging from high‐T, late‐magmatic conditions to greenschist–zeolite metamorphic facies. The abundance of undeformed metamorphic rocks (which is typical of the lower oceanic crust), the occurrence of Ca–Al (–Mg) metasomatism illustrated by the growth of Ca–Al silicates in veins or replacing the primary magmatic minerals, the PT conditions of the metamorphism and the numerous similarities with oceanic crustal rocks from Ocean Drilling Program and worldwide ophiolites are the main arguments for an ocean‐floor hydrothermal metamorphism in the vicinity of a palaeo‐ridge. Among the West‐European Variscan ophiolites, the Limousin ophiolites constitute an extremely rare occurrence that has not been involved in any HP (subduction‐related) or MP (orogenic) metamorphism as observed in other ophiolite occurrences (i.e. France, Spain and Germany).  相似文献   
2.
Abstract The high-grade metamorphic rocks of southern Brittany underwent a complex tectonic evolution under various P-T conditions (high-P, high-T), related to stacking of nappes during Palaeozoic continentcontinent collision. The east to west thrusting observed in the whole belt is strongly perturbed by vertical movements attributed to the ascent of anatectic granites in the high-T area. The field reconstruction of subvertical, closed elliptical structures in gneisses and migmatites, associated with the subhorizontal, doubly radial pattern of stretching lineation in the mica schists, suggests the existence of an elliptical diapiric body buried at depth beneath the present erosion level. Deformation is associated with a complex P-T evolution partly recorded in aluminous gneisses (kinzigites, e.g. morbihanites). A chronology of successive episodes of mineral growth at different compositions is established by detailed studies of the mineral-microstructure relationships in X-Z sections, using the deformation-partitioning concept (low- and high-strain zones). Several thermometric and barometric calibrations are applied to mineral pairs either in contact or not in contact but in equivalent microstructiiral positions with respect to the deformation history. This methodology provides a continuous microstructural control of P-T variations through time and leads to three P-T-t-d paths constructed from numerous successive P-T estimations. Path 1 is a clockwise retrograde path preserved in low-strain zones, which records general exhumation movements after crustal thickening. Paths 2 and 3 are clockwise prograde/retrograde paths from high-strain zones; they are interpreted and discussed in the light of models of crustal anatexis and upward movement of magma (diapirism). Deformation and P-T effects induced by diapirism can be distinguished from the general deformation-metamorphic history of a belt, and would seem to be produced during a late stage of its history. The present microstructural-petrological approach to defining successive mineral equilibria in relation to progressive deformation steps provides a far more accurate evaluation of the metamorphic evolution than is possible by ‘standard’thermobarometry.  相似文献   
3.
Dolerite dykes intruding Variscan plutonites were studied in terms of mineralogy, petrology, geochemistry and geochronology. The main mineral constituents were studied and the sequence of crystallization has been derived. The geochemical characteristic indicate mantle origin of the dolerites and magma sources different from the hosting granitoids. From SHRIMP analyses of five spots on four different zircon crystals, resulted a 292.0±4.1 Ma age that is interpreted as the time of crystallization of the dolerite. The hosting granitoids are probably the result of mixing between two possible end-members: enriched mantle and acid metaigneous or lower crustal metasediments.

The Variscan age of the dolerites, in combination with the geochemical characteristics, indicated that the enriched mantle basaltic material should be the source of the dolerite veins. These mantle-derived basaltic melts may represent the underplated material, which probably provided the necessary thermal input to the dehydration melting in the lower crust. The dolerites should have intruded the newly formed batholiths before or at the first stages of their uplift, recording the last events of the Variscan subduction.  相似文献   

4.
The Permocarboniferous basins in Northeast Germany formed on the heterogeneous and eroded parts of the Variscan orogene and its deformed northern foreland. Transtensional tectonic movements and thermal re-equilibration lead to medium-scale crustal fragmentation, fast subsidence rates and regional emplacement of large amounts of mostly acidic volcanics. The later basin formation and differentiation was triggered by reversals of the large-scale stress field and reactivation of prominent zones of weakness like the Elbe Fault System and the Rhenohercynian/Saxothuringian boundary that separate different Variscan basement domains in the area. The geomechanical behaviour of the latter plays an important role for the geodynamic evolution of the medium to large-scale structural units, which we can observe today in three dimensions on structural maps, geophysical recordings and digital models. This study concentrates on an area that comprises the southern Northeast German Basin, the Saale Basin, the Flechtingen High, the Harz Mountains High and the Subhercynian Basin. The presented data include re-evaluations of special geological and structural maps, the most recent interpretation of the DEKORP BASIN 9601 seismic profile and observations of exposed rock sections in Northeast Germany. On the basis of different structural inventories and different basement properties, we distinguish two structural units to the south and one structural unit to the north of the Elbe Fault System. For each unit, we propose a geomechanical model of basin formation and basin inversion, and show that the Rhenohercynian Fold and Thrust Belt domain is deformed in a thin-skinned manner, while the Mid-German Crystalline Rise Domain, which is the western part of the Saxothuringian Zone, rather shows a thick-skinned deformation pattern. The geomechanical model for the unit north to the Elbe Fault System takes account to the fact that the base of the Zechstein beneath the present Northeast German basin shows hardly any evidence for brittle deformation, which indicates a relative stable basement. Our geomechanical model suggests that the Permocarboniferous deposits may have contributed to the structural stiffness by covering small to medium scale structures of the upper parts of the brittle basement. It is further suggested that the pre-Zechstein successions underneath the present Northeast German basin were possibly strengthening during the Cretaceous basin inversion, which resulted in stress transfer to the long-lived master faults, as indicated for example by the shape of the salt domes in the vicinity of the latter faults. Contrary to this, post-Zechstein successions deformed in a different and rather complex way that was strongly biased by intensive salt tectonic movements.  相似文献   
5.
Garnet-spinel peridotites form small, isolated, variably retrogressed bodies within the low-pressure high-temperature gneisses and migmatites of the Variscan basement of the Schwarzwald, southwest Germany. Detailed mineralogical and textural studies as well as geothermobarometric calculations on samples from three occurrences are presented. Two of the garnet-spinel peridotites have equilibrated at 680–770°C, 1.4–1.8 GPa within the garnet-spinel peridotite stability field, one of the samples having experienced an earlier stage within the spinel peridotite stability field (790°C, <1.8 GPa). The third sample, with only garnet and spinel preserved, probably equilibrated within the garnet peridotite stability field at higher pressures. These findings are in line with the distinction of two groups of ultramafic garnet-bearing high-pressure rocks with different equilibration conditions within the Schwarzwald (670–740°C, 1.4–1.8 GPa and 740–850°C, 3.2–4.3 GPa) which has previously been established (Kalt et al. 1995). The equilibration conditions of 670–770°C and 1.4–1.8 GPa for garnet-spinel peridotites from the Central Schwarzwald Gneiss Complex (CSGC) are similar to those for eclogites of the Schwarzwald and also correspond quite well to those for garnet-spinel peridotites from the Moldanubian zone of the Vosges mountains and of ecologites from the Moldanubian s.str. of the Bohemian Massif.  相似文献   
6.
Previous studies of metapelitic rocks from the core of the southernBrittany metamorphic belt suggest a complex clockwise PTevolution. We use pseudosections calculated for an average subaluminousmetapelite composition in the MnNCKFMASH system and averagePT calculations to investigate in more detail the metamorphicevolution of these rocks. For migmatites, sequential occurrenceof kyanite, kyanite + staurolite and sillimanite suggests thata prograde evolution to P > 8 kbar at T  相似文献   
7.
8.
新疆蒙库地区位于阿尔泰山南麓,南接准噶尔盆地。该地区花岗岩分布广泛,主要为华力西中、晚期花岗岩。对蒙库地区华力西中期(石炭纪)花岗岩进行分析和研究认为,该区花岗岩处于华力西期大陆边缘造山带环境中,具有汇聚、造山期花岗岩的特征。岩浆沿断裂带上侵就位,为板块俯冲作用、陆—陆碰撞构造环境下形成的活动大陆边缘岩浆弧。深入研究蒙库地区花岗岩有助于我们了解这一时期该地区区域构造、岩浆演化的规律。  相似文献   
9.
Magmatism,metamorphism and metasomatism in the Palaeoproterozoic‐Mesoproterozoic Mt Painter Inlier and overlying Neoproterozoic Adelaidean rocks in the northern Flinders Ranges (South Australia) have previously been interpreted as resulting from the ca 500 Ma Delamerian Orogeny. New Rb–Sr, Sm–Nd and U–Pb data, as well as structural analysis,indicate that the area also experienced a second thermal event in the Late Ordovician (ca 440 Ma). The Delamerian Orogeny resulted in large‐scale folding, prograde metamorphism and minor magmatic activity in the form of a small volume of pegmatites and leucogranites. The Late Ordovician event produced larger volumes of granite (the British Empire Granite in the core of the inlier) and these show Nd isotopic evidence for a mantle component. The high‐temperature stage of this magmatic‐hydrothermal event also gave rise to unusual diopside‐titanite veins and the primary uranium mineralisation in the basement, of which the remobilisation was younger than 3.5 Ma. It is possible that parts of the Mt Gee quartz‐hematite epithermal system developed during the waning stages of the Late Ordovician event. We suggest that the Ordovician hydrothermal system was also the cause of the commonly observed retrogression of Delamerian metamorphic minerals (cordierite, andalusite) and the widespread development of actinolite, scapolite, tremolite and magnetite in the cover sequences. Deformation during the Late Ordovician was brittle. The recognition of the Late Ordovician magmatic‐hydrothermal event in the Mt Painter Province might help to link the tectonic evolution of central Australia and the southeast Australian Lachlan Fold Belt.  相似文献   
10.
In the northern Flinders Ranges, Neoproterozoic and Cambrian sedimentary rocks were deformed and variably metamorphosed during the ca 500 Ma Cambro‐Ordovician Delamerian Orogeny. Balanced and restored structural sections across the northern Flinders Ranges show shortening of about 10–20%. Despite the presence of suitable evaporitic detachment horizons at the basement‐cover interface, the structural style is best interpreted to be thick‐skinned involving basement with only a minor proportion of the overall shortening accommodated along stratigraphically controlled detachments. Much of the contractional deformation was localised by the inversion of former extensional faults such as the Norwest and Paralana Faults, which both controlled the deposition of Neoproterozoic cover successions. As such, both faults represent major, long‐lived structures which effectively define the present boundaries of the northern Flinders Ranges with the Gawler Craton to the west and the Curnamona Craton to the east. The most intense deformation, which resulted in exhumation of the basement along the Paralana Fault to form the Mt Painter and Babbage Inliers, coincides with extremely high heat flows related to extraordinarily high heat‐production rates in the basement rocks. High heat flow in the northern Flinders Ranges suggests that the structural style not only reflects the pre‐Delamerian basin architecture but is also a consequence of the reactivation of thermally perturbed, weakened basement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号