首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   2篇
地球科学   82篇
  2024年   2篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   1篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   9篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1988年   1篇
排序方式: 共有82条查询结果,搜索用时 21 毫秒
1.
Two sedimentary cores with pollen, charcoal and radiocarbon data are presented. These records document the Late‐glacial and Holocene dry forest vegetation, fire and environmental history of the southern Cauca Valley in Colombia (1020 m). Core Quilichao‐1 (640 cm; 3° 6′N, 76° 31′W) represents the periods of 13 150–7720 14C yr BP and, following a hiatus, from 2880 14C yr BP to modern. Core La Teta‐2 (250 cm; 3° 5′N, 76° 32′W) provides a continuous record from 8700 14C yr BP to modern. Around 13 150 14C yr BP core Quilichao‐1 shows an active Late‐glacial drainage system and presence of dry forest. From 11 465 to 10 520 14C yr BP dry forest consists mainly of Crotalaria, Moraceae/Urticaceae, Melastomataceae/Combretaceae, Piper and low stature trees, such as Acalypha, Alchornea, Cecropia and Celtis. At higher elevation Andean forest comprising Alnus, Hedyosmum, Quercus and Myrica was common. After 10 520 14C yr BP the floral composition of dry forest changed, with extensive open grass vegetation indicative of dry climatic conditions. This event may coincide with the change to cool and dry conditions in the second part of the El Abra stadial, an equivalent to the Younger Dryas. From 8850 14C yr BP the record from La Teta indicates dry climatic conditions relative to the present, these prevailing up to 2880 14C yr BP at Quilichao and to 2720 14C yr BP at La Teta. Severe dryness reached maxima at 7500 14C yr BP and 4300 14C yr BP, when dry forest reached maximum expansion. Dry forest was gradually replaced by grassy vegetation, reaching maximum expansion around 2300 14C yr BP. After 2300 14C yr BP grassy vegetation remains abundant. Presence of crop taxa (a.o. Zea mays), disturbance indicators (Cecropia) and an increase in charcoal point to the presence of pre‐Columbian people since 2300 14C yr BP. After 950 14C yr BP, expansion of secondary forest taxa may indicate depopulation and abandonment of previously cultivated land. After 400 14C yr BP, possibly related to the Spanish conquest, secondary forest expanded and charcoal concentrations increased, possibly indicating further reduction of cultivated land. During the past century, Heliotropium and Didymopanax became abundant in an increasingly degraded landscape. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
3.
    
This paper investigates the spaces for participation that have been created by readiness preparations launched in connection with the international initiative “Reduced Emissions from Deforestation and Forest Degradation” (REDD+) in Colombia and Costa Rica. I analyse the emergence of these spaces and who is leading the process in each country. My findings indicate that in Costa Rica, the public sector is leading preparation activities and creating the public spaces for participation in REDD to which private actors are invited. In Colombia on the other hand, NGOs, development assistance agencies and other private actors are leading the process and the state is the invited actor. I identify four factors that determine the scope of different actors’ possibilities to participate in the REDD+ spaces. These are (a) control of key resources, (b) ideological affinity, (c) the creation and dissemination of information and knowledge, and (d) the creation of norms to validate REDD+ pilot initiatives. The separation between these factors is not clear-cut and consequently they reinforce each other at different levels. The research presented here contributes to a better understanding of the implications that national REDD+ politics may have in the future functioning of the programme.  相似文献   
4.
    
The Vetas-California Mining District (VCMD), located in the central part of the Santander Massif (Colombian Eastern Cordillera), based on U–Pb dating of zircons, records the following principal tectono-magmatic events: (1) the Grenville Orogenic event and high grade metamorphism and migmatitization between ∼1240 and 957 Ma; (2) early Ordovician calc–alkalic magmatism, which was synchronous with the Caparonensis–Famatinian Orogeny (∼477 Ma); (3) middle to late Ordovician post-collisional calc–alkalic magmatism (∼466–436 Ma); (4) late Triassic to early Jurassic magmatism between ∼204 and 196 Ma, characterized by both S- and I-type calc–alkalic intrusions and; (5) a late Miocene shallowly emplaced intermediate calc–alkaline intrusions (10.9 ± 0.2 and 8.4 ± 0.2 Ma). The presence of even younger igneous rocks is possible, given the widespread magmatic–hydrothermal alteration affecting all rock units in the area.The igneous rocks from the late Triassic–early Jurassic magmatic episodes are the volumetrically most important igneous rocks in the study area and in the Colombian Eastern Cordillera. They can be divided into three groups based on their field relationships, whole rock geochemistry and geochronology. These are early leucogranites herein termed Alaskites-I (204–199 Ma), Intermediate rocks (199–198 Ma), and late leucogranites, herein referred to as Alaskites-II (198–196 Ma). This Mesozoic magmatism is reflecting subtle changes in the crustal stress in a setting above an oblique subduction of the Panthalassa plate beneath Pangea.The lower Cretaceous siliciclastic Tambor Formation has detrital zircons of the same age populations as the metamorphic and igneous rocks present in the study area, suggesting that the provenance is related to the erosion of these local rocks during the late Jurassic or early Cretaceous, implying a local supply of sediments to the local depositional basins.  相似文献   
5.
Systematic inversion of double couple focal mechanisms of shallow earthquakes in the northern Andes reveals relatively homogeneous patterns of crustal stress in three main regions. The first region, presently under the influence of the Caribbean plate, includes the northern segment of the Eastern Cordillera of Colombia and the western flank of the Central Cordillera (north of 4°N). It is characterized by WNW–ESE compression of dominantly reverse type that deflects to NW–SE in the Merida Andes of Venezuela, where it becomes mainly strike–slip in type. A major bend of the Eastern thrust front of the Eastern Cordillera, near its junction with the Merida Andes, coincides with a local deflection of the stress regime (SW–NE compression), suggesting local accommodation of the thrust belt to a rigid indenter in this area. The second region includes the SW Pacific coast of Colombia and Ecuador, currently under the influence of the Nazca plate. In this area, approximately E–W compression is mainly reverse in type. It deflects to WSW–ENE in the northern Andes south of 4°N, where it is accommodated by right-lateral displacement of the Romeral fault complex and the Eastern front of the northern Andes. The third, and most complex, region is the area of the triple junction between the South American, Nazca and Caribbean plates. It reveals two major stress regimes, both mainly strike–slip in type. The first regime involves SW–NE compression related to the interaction between the Nazca and Caribbean plates and the Panama micro-plate, typically accommodated in an E–W left-lateral shear zone. The second regime involves NW–SE compression, mainly related to the interaction between the Caribbean plate and the North Andes block which induces left-lateral displacement on the Uramita and Romeral faults north of 4°N.Deep seismicity (about 150–170 km) concentrates in the Bucaramanga nest and Cauca Valley areas. The inversion reveals a rather homogeneous attitude of the minimum stress axis, which dips towards the E. This extension is consistent with the present plunge of the Nazca and Caribbean slabs, suggesting that a broken slab may be torn under gravitational stresses in the Bucaramanga nest. This model is compatible with current blocking of the subduction in the western northern Andes, inhibiting the eastward displacement of slabs, which are forced to break and sink in to the asthenosphere under their own weight.  相似文献   
6.
    
Analysis of teleseismic records obtained in two broadband seismic stations of three components located on the Andean region of Colombia is presented in this work. The two stations are located at the Western Cordillera (WC), station BOL, and at the Central Cordillera (CC), station PBLA. The analysis of seismograms was performed by inversion of the receiver functions (RF) in order to obtain the crustal velocity structure beneath the receivers. The receiver function is a spectral ratio obtained from teleseismic earthquakes recorded by broadband seismic stations, which allows the calculation of the velocity structure beneath the receiver by removing source effects in the horizontal components of the seismic traces. Data stacking was performed in order to improve signal to noise ratio and then the data was inverted by using two optimization algorithms: a genetic algorithm (GA), and a simulated annealing algorithm (SA). The present work calculates the receiver functions using teleseismic earthquakes at epicentral distances (Δ) ranging between 30° and 90° and recorded at the two stations within the years 2007 and 2009.Delay times between P and PS waves converted at the Moho boundary were used to constrain the velocity structure. The receiver functions at the stations were generated from seismic events within a broad range of back azimuth. Data from gravity and magnetism were also used during the geophysical survey. The depth of the Moho boundary was found to be at 40 km in the WC beneath station BOL and at 43 km in the CC beneath station PBLA. The upper crust, with a thickness of 5 km, is characterized by a shear wave velocity of about 3.0 km s−1; the shallower layers, at approximately 1.0 km, have shear wave velocities between 2.2 and 2.6 km s−1, which corresponds to sediments overlying the upper crust. These observations support the hypothesis of a thickness of the crust at the root of the mountain range to be between 32 and 50 km. The calculated receiver functions were compared with artificial ones generated from the inversion of 48000 models of horizontal layers for each station using a GA and an SA that allowed a satisfactory coverage of all the sample space in order to avoid non-unique solutions. Beneath station BOL a moderate low-velocity zone (LVZ) was found, which was caused by accretionary processes of the ophiolite complex in the WC.  相似文献   
7.
8.
    
Using data from glacial geomorphology, tephra–soil stratigraphy and mineralogy, palynology, and radiocarbon dating, a sequence of glacial and bioclimatic stades and interstades has been identified for the last ca. 50000 yr in the Ruiz-Tolima massif, Cordillera Central, Colombia. Six Pleistocene cold stades separated by warmer interstades occurred: before 48000, between 48000 and 33000, between 28000 and 21000, from ≥16000 to ca. 14000, ca. 13000–12400, and ca. 11000–10000 yr BP. Although these radiocarbon ages are minimum-limiting ages obtained from tephra layers on top of tills, the tills are not significantly older because most are bracketed by dated tephra sets in measured stratigraphic sections. Two minor moraine stages likely reflect glacier standstill during cold intervals ca. 7400 yr BP and slightly earlier. Finally, glaciers readvanced between the seventeenth and nineteenth centuries. In contrast to the ice-clad volcanoes of the massif, ca. 34 km2 in area above an altitude of ca. 4800 m, the ice cover expanded to 1200 km2 during the Last Glacial Maximum (LGM) and was still 800 km2 during Late-glacial time (LGT). Glacier reconstructions based on the moraines suggest depression of the equilibrium line altitude (ELA) by ca. 1100 m during the LGM and 500–600 m during LGT relative to the modern ELA, which lies at ca. 5100 m in the Cordillera Central. Glaciers in this region apparently reached their greatest extent when the climate was cold and wet, e.g. during stades corresponding to Oxygen Isotope Stage 3; glaciers were still expanding during the LGM ca. 28000–21000 yr BP, but they shrank considerably after 21000 yr BP because of greatly reduced precipitation. © 1997 John Wiley & Sons, Ltd.  相似文献   
9.
The Villeta Group of Colombia and equivalent stratigraphic units of Venezuela and Ecuador comprise marine sequences ranging from Albian to Santonian in age. Deposition of the Villeta Group was presumed to take place entirely in quiet tectonic conditions in a passive margin setting that occupied NW South America. From a large database of 2D/3D seismic, well, surface geology, and biostratigraphic data, we present evidence for intra-Villeta (mostly late Albian–Cenomanian) deformation in parts of the Upper Magdalena Valley and Eastern Cordillera of Colombia, controlled by transpressional fault reactivation, produced by transpressional fault reactivation and thrusting that resulted in an angular unconformity. This event has been largely unnoticed in the literature, but previously scattered evidence supports our observations, suggesting regionally extensive tectonism. Published fission-track age determinations and other geologic evidence from Colombia and Venezuela suggest significant uplifts around 80–100 m.y., which may reflect changes in the subduction regime, with compressional deformation in certain regions and extensional deformation in others. A late Albian onset of compressional deformation along the Colombian and Peruvian segments of the Andes may be related to the opening of the South Atlantic Ocean at equatorial latitudes. Identification of tectonic activity with development of an unconformity in intra-Villeta times provides new insights into understanding the evolution of the Upper Magdalena Valley and adjacent areas of Colombia and western Venezuela and creates new possibilities for hydrocarbon exploration, with additional trapping phases, better reservoir preservation by early migration and secondary porosity, and ultimately facies changes with stratigraphic potential.  相似文献   
10.
    
New field, geochronological, geochemical and biostratigraphical data indicate that the central and northern parts of the Cordillera Occidental of the Andes of Ecuador comprise two terranes. The older (Pallatanga) terrane consists of an early to late (?) Cretaceous oceanic plateau suite, late Cretaceous marine turbidites derived from an unknown basaltic to andesitic volcanic source, and a tectonic mélange of probable late Cretaceous age. The younger (Macuchi) terrane consists of a volcanosedimentary island arc sequence, derived from a basaltic to andesitic source. A previously unidentified, regionally important dextral shear zone named the Chimbo-Toachi shear zone separates the two terranes. Regional evidence suggests that the Pallatanga terrane was accreted to the continental margin (the already accreted Cordillera Real) in Campanian times, producing a tectonic mélange in the suture zone. The Macuchi terrane was accreted to the Pallatanga terrane along the Chimbo-Toachi shear zone during the late Eocene, probably in a dextral shear regime. The correlation of Cretaceous rocks and accretionary events in the Cordillera Occidental of Ecuador and Colombia remains problematical, but the late Eocene event is recognised along the northern Andean margin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号