首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9179篇
  免费   2196篇
  国内免费   2210篇
地球科学   13585篇
  2024年   61篇
  2023年   176篇
  2022年   252篇
  2021年   321篇
  2020年   363篇
  2019年   495篇
  2018年   363篇
  2017年   359篇
  2016年   368篇
  2015年   448篇
  2014年   485篇
  2013年   540篇
  2012年   564篇
  2011年   546篇
  2010年   464篇
  2009年   577篇
  2008年   548篇
  2007年   741篇
  2006年   624篇
  2005年   542篇
  2004年   538篇
  2003年   468篇
  2002年   435篇
  2001年   364篇
  2000年   336篇
  1999年   346篇
  1998年   339篇
  1997年   287篇
  1996年   304篇
  1995年   273篇
  1994年   244篇
  1993年   193篇
  1992年   166篇
  1991年   132篇
  1990年   77篇
  1989年   74篇
  1988年   59篇
  1987年   39篇
  1986年   17篇
  1985年   12篇
  1984年   7篇
  1983年   10篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
Infiltration experiments have been performed at three sites along a well-known catena under virgin tropical rain forest using a portable sprinkling infiltrometer. Experimentally determined infiltration curves are presented. Infiltration curves are also simulated on the basis of the Mein-Larson equation. The parameters for this model have been obtained from the infiltration curves (saturated conductivity) and simple soil moisture determinations (fillable porosity). The agreement between experimentally determined and modelled infiltration is reasonable, provided (a) saturated conductivity as derived from the experimental data is corrected, (b) a storage parameter, also derived from the experimental data, is added to the Mein-Larson model, and (c) the decline in soil porosity with depth is either small or occurs abruptly at shallow depth. Comparison of observed infiltration rates with rainfall intensity shows that Horton Overland Flow has to occur naturally at least on the middle and lower section of the catena. Despite the fact that most parameters can be estimated in principle from basic soil data, it remains advisable to obtain sprinkling infiltrometer field measurements, because of soil variability due to dynamic surface conditions, macroporosity, air entrapment, and irregularity of the wetting front.  相似文献   
5.
6.
7.
Nonlinear interactions between large waves and freely floating bodies are investigated by a 2D fully nonlinear numerical wave tank (NWT). The fully nonlinear 2D NWT is developed based on the potential theory, MEL/material-node time-marching approach, and boundary element method (BEM). A robust and stable 4th-order Runge–Kutta fully updated time-integration scheme is used with regriding (every time step) and smoothing (every five steps). A special φn-η type numerical beach on the free surface is developed to minimize wave reflection from end-wall and wave maker. The acceleration-potential formulation and direct mode-decomposition method are used for calculating the time derivative of velocity potential. The indirect mode-decomposition method is also independently developed for cross-checking. The present fully nonlinear simulations for a 2D freely floating barge are compared with the corresponding linear results, Nojiri and Murayama’s (Trans. West-Jpn. Soc. Nav. Archit. 51 (1975)) experimental results, and Tanizawa and Minami’s (Abstract for the 6th Symposium on Nonlinear and Free-surface Flow, 1998) fully nonlinear simulation results. It is shown that the fully nonlinear results converge to the corresponding linear results as incident wave heights decrease. A noticeable discrepancy between linear and fully nonlinear simulations is observed near the resonance area, where the second and third harmonic sway forces are even bigger than the first harmonic component causing highly nonlinear features in sway time series. The surprisingly large second harmonic heave forces in short waves are also successfully reproduced. The fully updated time-marching scheme is found to be much more robust than the frozen-coefficient method in fully nonlinear simulations with floating bodies. To compare the role of free-surface and body-surface nonlinearities, the body-nonlinear-only case with linearized free-surface condition was separately developed and simulated.  相似文献   
8.
P. Bonneton   《Ocean Engineering》2007,34(10):1459-1471
In this paper, we analyse the ability of the nonlinear shallow-water (NSW) equations to predict wave distortion and energy dissipation of periodic broken waves in the inner surf zone. This analysis is based on the weak-solution theory for conservative equations. We derive a new one-way model, which applies to the transformation of non-reflective periodic broken waves on gently sloping beaches. This model can be useful to develop breaking-wave parameterizations (in particular broken-wave celerity expression) in both time-averaged wave models and time-dependent Boussinesq-type models. We also derive a new wave set-up equation which provides a simple and explicit relation between wave set-up and energy dissipation. Finally, we compare numerical simulations of both, the NSW model and the simplified one-way model, with spilling wave breaking experiments and we find a good agreement.  相似文献   
9.
规则波和不规则波作用下消波建筑物前的波高分析   总被引:1,自引:0,他引:1  
消波建筑物在国内外已得到广泛应用。本文采用近似方法分析了明基床上直立式消波建筑物前的波高及消波室内的波高,从而确定建筑物的消波效果。并在规则波的基础上将成果推广至不规则波作用下的情况。  相似文献   
10.
Except the commonly selected pressure transfer function derived from the linear wave theory, a previous study on the pressure transfer function for recovering surface wave from underwater pressure transducer suggested that the pressure transfer function is a function of frequency parameter only. With careful analysis, this study showed that the pressure transfer function should include a transducer submergence parameter as that given by the linear theory. It was found that the previously suggested empirical formula should be restricted to measurements with the pressure transducer close to the surface; otherwise overestimation of wave height would result. Field measurements were carried out with an acoustic wave gauge and a synchronized pressure transducer located at various depths with submergence parameter close to 1 (near the sea floor). It was shown that the previous one-parameter empirical formula might overestimate the significant wave height by more than 30%. This study found that with deep-water wave bursts excluded, the transfer function based on the linear wave theory provided a fairly good estimation on the significant wave heights, with an average deviation of 3.6%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号