首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   35篇
  国内免费   43篇
地球科学   173篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   10篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   6篇
  2003年   6篇
  2002年   11篇
  2001年   8篇
  2000年   10篇
  1999年   1篇
  1998年   9篇
  1997年   5篇
  1996年   10篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1988年   2篇
  1986年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
1.
应用阶段加热技术 ,对中国东部新生代玄武岩中的橄榄岩包体和大别造山带超高压榴辉岩进行了包裹体 CO2 的碳同位素组成测定。结果表明 ,橄榄岩的δ1 3C值变化较大 ,从 - 2 2 .8‰到 0 .7‰ ,明显不同于前人报道的低δ1 3C值 (- 2 8‰~- 2 0‰ )特征 ,指示中国东部地幔流体中 CO2 的碳同位素组成是不均一的 ,反映了地壳有机碳与原生地幔碳的混合特征。大别造山带榴辉岩的 δ1 3C变化从 - 18.5‰到 4 .6‰ ,同样明显不同于前人报道的低 δ1 3C值 (- 30‰~ - 2 0‰ )特征。榴辉岩的低δ1 3C值指示了板块俯冲前其玄武岩原岩受到地表含有机碳流体蚀变后的碳同位素特点 ,而较高的δ1 3C值反映了板块折返过程中榴辉岩受淋滤大理岩的富 CO2 流体叠加的退变质效应。橄榄岩包体和超高压榴辉岩的轻碳同位素共同特点反映了板块俯冲引起的壳—幔物质相互作用和碳同位素地球化学再循环 ,指示中国东部岩石圈地幔含有丰富的地壳有机碳组分  相似文献   
2.
基性岩墙群是大陆和大陆造山带内发育的特殊地质体,包含丰富的地球动力学信息。造山带内基底岩块是造山作用过程卷入造山带的外来或原地地块(陆块),基底岩块中基性岩墙群的发育及其变形、变质特征,既为造山带内存在古老陆块和古陆块的裂离提供了证据,也为造山过程的构造动力学研究提供了重要信息。加强造山带基底岩块中基性岩墙群的多学科综合研究,对于探讨大陆造山带的形成、演化及其动力学过程具重要意义。  相似文献   
3.
The Anqing Fe–Cu skarn deposit, with an age of 134 to 142 Ma and resources of 62.4 Mt at 0.906% Cu and 32.2% Fe, is one of the most important deposits in the Yangtze River Metallogenic Belt, East China. To better understand the localization of orebodies and thus facilitate predictive exploration of deep orebodies, computational modeling is used to simulate the coupled geodynamic processes during the syn-tectonic cooling of the ore-related intrusion, based on geological and geophysical investigations in the Anqing orefield.The occurrences of the ore veins and veinlets in diorite and skarn, as well as the sharp zigzag boundary of the orebody, indicate that the Cu ores were deposited after the solidification of the diorite and skarn formation, and were located in some tensional structural spaces that are unevenly distributed along the contact zone between the felsic intrusion and sedimentary carbonates. The locations of orebodies are closely associated with the contact zone shape. The computational results of two models with two typical contact-shapes show that pore fluid flow was focused into the dilation zones from different sources. All the significant dilation zones, in which the existing orebodies were located, are distributed in some specific places of the south contact zone of the intrusion. In addition, these dilation zones are closely related to the contact zone shape of the intrusion and can control the location of orebodies through the coupled mechano-thermo-hydrological processes during cooling of the intrusion in the extension setting. The skarns are not critical for controlling the localization of orebodies. This means that exploration for deep ore should target deep dilation zones close to the contact boundary of the intrusion. Such recognition may provide a useful guide in selecting exploration targets in the Anqing orefield. As a direct result of computational modeling, an orebody has been discovered in the deep dilation zone in this orefield. It demonstrates that computational modeling is a promising tool for understanding the metallogenic processes and for facilitating the deep exploration of hidden orebodies that are related to intrusions.  相似文献   
4.
大兴安岭地区位于兴蒙造山带的东段,构造、岩浆活动强烈,蕴藏着丰富的内生有色金属、贵金属矿产资源。本文通过对该区内生铜矿床的地质特征、成因类型和年代学研究,初步将区内内生铜矿床划分为斑岩型、浅成热液高硫化型(铜银、铜锡)和接触交代型三种成因类型,除铜锡矿床外,它们的成矿作用均与高钾钙碱系列I型花岗质岩浆密切相关;其中斑岩型和浅成热液高硫化型(铜、银)的成矿分别发生在485Ma、180~170Ma和170~160Ma;而浅成热液高硫化型(铜锡)矿床与A型花岗质岩浆相关,成矿在150~135Ma之间;接触交代型与它们相伴生,主要发生在180~160Ma和150~135Ma。其成矿动力学背景分别与早古生代兴安地块与松嫩地块的拼合碰撞造山、中侏罗世的西伯利亚板块和华北板块的陆缘增生带碰撞缝合造山与早白垩世碰撞造山后的地壳伸展减薄作用过程相适应,矿床在不同阶段的造山挤压与伸展转换或造山期后的伸展阶段就位,这项研究为深入研究该区内生多金属成矿规律提供了科学依据。  相似文献   
5.
The fracturing analysis in the Permian basins of Jebilet and Rehamna (Hercynian Morocco) and the underlying terranes allowed us to suggest a model for their opening. Three tectonic episodes are distinguished: a transtensional episode NNE–SSW-trending (Permian I), occurring during the opening along sinistral wrench faults N70–110-trending, associated with synsedimentary normal faults; a transpressive episode ESE–WNW-trending (Permian II), initiating the closure, the normal faults playing back reverse faults and the N70 trending faults dextral wrench faults; a compressional episode NNW–SSE (post-Permian, ante-Triassic), accentuating the closure and the deformation and putting an end to the Tardi-Hercynian compressive movements. To cite this article: A. Saidi et al., C. R. Geoscience 334 (2002) 221–226.  相似文献   
6.
We show the magnetic model of the Selli-Vavilov region. The Selli Line is known as the northwestern edge of the southern Tyrrhenian Basin. The tectonic evolution of the Tyrrhenian Basin is dominated by a Tortonian-Quaternary extension through the eastward movement of the Apennine subduction system. This migration has generated a diffuse stretching of the continental crust with the emplacement of new oceanic material. This latter occurred in several localized zones where the eastward retreating of the Ionian subduction system produced a strong depletion of the crust with formation of basins and correlated spreading. Nowadays the presence of oceanic crust is confirmed through direct drilling investigation but a complete mapping of the oceanic crustal distribution is still lacking. The Selli-Vavilov region shows a differentiated crustal setting where seamount structures, the oceanic basement portions and continental crust blocks are superimposed. To this aim, a 2D inversion of the magnetic data of this region was conducted to define buried structures. The magnetic susceptibility pattern was computed by solving the least squares problem of the misfit between the predicted and real data for separated wavebands. This method produced two 2D models of the high and low frequency fields of the Selli-Vavilov region. The two apparent susceptibility maps provide different information for distinct ranges of depth. The results of the inversions were also combined with seismic data of the Selli region highlighting the position of the highly magnetized buried bodies. The results confirm a role for the Selli Line as a deep crustal boundary dividing the Sardinian passive domain from the easternmost active region where different oceanic structures are located. The Selli Line has worked as a detachment fault system which has moved eastward. Finally, the Selli-Vavilov region may be interpreted as a tectonic result due to a passive asymmetrical rift occurred between the Tortonian and Pliocene.  相似文献   
7.
8.
We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics,trench geometry,and mechanisms for plateau accretion and continental growth.Transient instabilities of the convergent margin are produced,resulting in:contorted trench geometry;trench migration parallel with the plate margin;folding of the subducting slab and orocline development at the convergent margin;and transfer of the plateau to the overriding plate.The presence of plume material beneath the oceanic plateau causes flat subduction above the plume,resulting in a "bowed" shaped subducting slab.In plateau-only models,plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau.The plateau shortens and some plateau material subducts.The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin.In the plateau + plume model,plateau accretion causes rapid trench advance.Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate.The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau,effectively embedding the plateau into the overriding plate.A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the overriding plate through the window.In all of the models,the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate.The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian Orogen(Altiads),which are characterised by accreted ophiolite complexes with diverse geochemical affinities,and a protracted evolution of accretion of exotic terranes including oceanic plateau and terranes with plume origins.  相似文献   
9.
We explore the variations of Rayleigh-wave phase-velocity beneath the East China Sea in a broad period range (5–200 s). Rayleigh-wave dispersion curves are measured by the two-station technique for a total of 373 interstation paths using vertical-component broad-band waveforms at 32 seismic stations around the East China Sea from 6891 global earthquakes.The resulting maps of Rayleigh-wave phase velocity and azimuthal anisotropy provide a high resolution model of the lithospheric mantle beneath the East China Sea. The model exhibits four regions with different isotropic and anisotropic patterns: the Bohai Sea, belonging to the North China Craton, displays a continental signature with fast velocities at short periods; the Yellow Sea, very stable unit associated with low deformation, exhibits fast velocities and limited anisotropy; the southern part of the East China Sea, with high deformation and many fractures and faults, is related to slow velocities and high anisotropic signature; and the Ryukyu Trench shows high-velocity perturbations and slab parallel anisotropy.  相似文献   
10.
When a study is to be made of seismic risks, the present-day geodynamic conditions are of fundamental importance: Earthquakes do not happen by themselves, they do have a cause. The cause of earthquakes is that the tectonic stresses exceed a critical limit. The build-up of these stresses is conditioned by the geodynamic processes occurring in the region in question. A knowledge of the geodynamics characteristic of a region is therefore fundamental for seismic risk studies. The general methodology for making such a geodynamic study is based on the entire set of manifestations of the plate-tectonic conditions of that region: these include the mechanism of earthquakes, the stresses observed in mines, the orientation of surface joints and even the direction of river valleys. Examples of geodynamic studies and their bearing on seismic risks are shown from various areas of the world, notably from China, India, and Colombia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号