首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   3篇
数理化   123篇
  2022年   2篇
  2021年   7篇
  2020年   9篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   9篇
  2013年   7篇
  2012年   4篇
  2011年   8篇
  2010年   13篇
  2009年   6篇
  2008年   12篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1993年   1篇
排序方式: 共有123条查询结果,搜索用时 859 毫秒
1.
A simple modification of a previously published ellipticine synthesis is reported, which decreases the reaction time and increases the yield and purity of the product. Benzylic oxidations of 1,4-dimethylcarbazole and ellipticine derivatives were studied and 13-hydroxyellipticine was prepared.  相似文献   
2.
The degradation of dyes is frequently initiated by one-electron oxidation or reduction; however, relatively little is known about the initially formed radicals. Acid Green 25 (AG25), Crystal Violet (CVI), Methylene Blue (MB), and Acid Orange 7 (AO7), representing paradigms of four types of commercial organic dyes, were therefore investigated in terms of their redox behavior. Their redox potentials in MeCN and buffered aqueous solutions were determined by cyclic voltammetry. The structures of the one-electron reduced and oxidized dyes were established by EPR spectroscopy and by theoretical calculations on the density functional level of theory.  相似文献   
3.
Kominkova  Marketa  Michalek  Petr  Moulick  Amitava  Nemcova  Barbora  Zitka  Ondrej  Kopel  Pavel  Beklova  Miroslava  Adam  Vojtech  Kizek  Rene 《Chromatographia》2014,77(21):1441-1449

Biosynthesis belongs to one of the new possibilities of nanoparticles preparation, whereas its main advantage is biocompatibility. In addition, the ability of obtaining the raw material for such synthesis from the soil environment is beneficial and could be useful for remediation. However, the knowledge of mechanisms that are necessary for the biosynthesis or effect on the bio-synthesizing organisms is still insufficient. In this study, we attempted to evaluate the effect of quantum dots (QDs) not only on a model organism of collembolans, but also on another soil organism—earthworm Eisenia fetida—and in also one widespread microorganism such as Escherichia coli. Primarily, we determined 28EC50 as 72.4 μmol L−1 for CdTe QDs in collembolans. Further, we studied the effect of QDs biosynthesis in E. fetida and E. coli. Using determination of QDs, low-molecular thiols and antioxidant activities, we found differences between both organisms and also between ways how they behave in the presence of Cd and/or Cd and Te. The biosynthesis in earthworms can be considered as its own protective mechanism; however, in E. coli, it is probably a by-product of protective mechanisms.

  相似文献   
4.
Cellulose - This work is devoted to the study of surface properties of cellulose before and after a surface modification. Surface modification of polymeric materials was carried out in two steps:...  相似文献   
5.
6.
We design a new mesoscopic thin-film model for shape-memory materials which takes into account thermomechanical effects. Starting from a microscopic thermodynamical bulk model, we guide the reader through a suitable dimension reduction procedure followed by a scale transition valid for specimen large in area up to a limiting model which describes microstructure by means of parametrized measures. All our models obey the second law of thermodynamics and possess suitable weak solutions. This is shown for the resulting thin-film models by making the procedure described above mathematically rigorous. The main emphasis is, thus, put on modeling and mathematical treatment of joint interactions of mechanical and thermal effects accompanying phase transitions and on reduction in specimen dimensions and transition of material scales.  相似文献   
7.
8.
Multivalent ions take a significant role in the sorption of soluble polysaccharides on solid cellulose substrates and thus demonstrate an important principle in structural polysaccharide organisation. Sorption of Fe(III)–alginate complexes on lyocell fibres as model for the insoluble cellulose matrix has been studied between pH 3–13, at 30 and 60 °C. Sorption maximum of the Fe(III)–alginate complex was observed at pH 3 where the sorbed amounts of alginate and iron were 6,600 and 85 mg iron per kg cellulose respectively. Under the experimental conditions used, a concentration of 0.05 mM Fe(III) is sufficient to achieve surface sorption of Fe(III)–alginate complex. The alginate sorption exhibited minor dependence on molar ratio of Fe(III) to alginate. In environmental scanning electron microscopy no deposition of Fe-hydroxides on the fiber surface was detected. The thickness of the adsorbed Fe(III)–alginate layer on the fiber surface was estimated with 12–22 nm. Tensile strength and abrasion resistance of Fe(III)–alginate treated fibers were not reduced through the sorption treatment. Alginate modified cellulose is of interest as material for medical application, as sorbent and textile finish.  相似文献   
9.
Online restricted access media with liquid chromatography and tandem mass spectrometry for the direct analysis of small molecules in biological fluids represents an interesting alternative to time‐demanding traditional sample preparation techniques. In this study, important considerations concerning the development of a restricted access media with liquid chromatography and tandem mass spectrometry method for the analysis of dansylated estrogens in biological matrix are presented. Parameters influencing peak tailing and trapping efficiency were evaluated. The key factors included the ion strength of the mobile phase, a loading flow rate of the sample onto the trap column, and selection of a proper stationary phase of the trap column for a given set of analytes. These parameters have proven to be essential for minimizing any unwanted chromatographic peak tailing. The bulk derivatization of the analytes in the biological fluids and its relationship to the observed matrix effects was evaluated as well.  相似文献   
10.
The trivalent metal cations Al3+, Cr3+, and Fe3+ were each introduced, together with Sc3+, into MIL‐100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X‐ray diffraction (PXRD) and solid‐state NMR, UV/Vis, and X‐ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL‐100 samples were prepared in which part of the Fe is present as α‐Fe2O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed‐metal catalysts in Lewis acid catalysed Friedel–Crafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed‐metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α‐Fe2O3 nanoparticles were also active Lewis acid species, although less active than Sc3+ in trimer sites. The incorporation of Fe3+ into MIL‐100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc3+ and Fe3+. A procedure for using these mixed‐metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号