首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
数理化   2篇
  2022年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Mu-Hong Hu 《中国物理 B》2022,31(9):93101-093101
Theoretical calculations of the energy levels and magnetic dipole transition parameters for the 1s22s22p3 and 1s22p5 configurations of nitrogen isoelectronic sequence with Z=21-30 are performed using multi-congfiguration Dirac-Fock (MCDF) method. Based on the relativistic computational code GRASP2k compiled within the framework of MCDF method, the electron correlations, Breit interaction and QED effects are well treated in detail. The energy levels, line strengths and transition rates of magnetic dipole transition are obtained and compared with the experimental data available. For most cases, good agreements are achieved and the relative differences of them are less than 0.114%, 8.43% and 9.80%, respectively. The scaling laws of the fine structure splitting and transition rate are obtained on the isoelectronic sequence and the corresponding physical mechanisms are discussed. The data sets for tables are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00022.  相似文献   
2.
The electron-impact ionization of lithium-like ions C3+,N4+,O5+,Ne7+,and Fe23+is studied using a combination of two-potential distorted-wave and R-matrix methods with a relativistic correction.Total cross sections are computed for incident energies from 1 to 10 times of ionization energy and better agreements with the experimental results are obtained in comparison with the theoretical data available.It is found that the indirect ionization processes become significant for the incident energy larger than about four times of the ionization energy.Contributions from the exchange effects along the isoelectronic sequence are also discussed and found to be important.The present method can be used to obtain systematic ionization cross sections for highly charged ions across a wide incident energy range.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号