首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   0篇
  国内免费   10篇
工业技术   101篇
  2024年   3篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   7篇
  2014年   8篇
  2013年   6篇
  2012年   5篇
  2011年   7篇
  2010年   9篇
  2008年   1篇
  2007年   3篇
  2006年   8篇
  2005年   10篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
目的 旨在有效解决稠油化学冷采过程中降黏剂窜流现象严重、油藏动用效率低的问题,支撑稠油绿色高效开发。方法 基于稠油冷采降黏剂高效降黏洗油与冻胶分散体调剖剂储层调控的协同效应,采用复配方式构建了稠油冷采用冻胶分散体调驱体系,测试其基本性能,并使用界面扩张流变仪以及流变仪,考查了体系的界面流变特性和剪切应力特性。结果 体系由质量分数为0.06%~0.12%的冻胶分散体和质量分数为0.05%~0.15%的降黏剂组成,为粒径均一的低黏流体,能够降低界面张力并乳化稠油,降黏率达到95%以上。体系中降黏剂在油水界面的吸附行为决定了体系的乳化降黏能力,降黏剂通过吸附在冻胶分散体的表面提高了体系的聚结稳定性,并考查了组分含量及油藏条件对以上过程的影响。结论 构建了一种兼具储层调控和高效降黏能力稠油冷采用冻胶分散体调驱体系,探明了体系中各组分间的相互作用机制,为稠油化学冷采提供了技术支持。  相似文献   
2.
双河油田聚合物驱后深部调剖技术研究   总被引:2,自引:0,他引:2  
聚合物驱后深部调剖技术弥补了聚合物溶液调剖作用有限的缺点,通过对地层充分调剖提高波及系数,最大限度提高地层的采收率.针对河南双河油田的情况,经研究发现:冻胶型深部调驱剂可根据需要配成不同成冻时间和强度的体系,体系成冻时间1d~15d,突破真空度0.04~0.062 MPa,具有较强的封堵能力.可视化模型研究表明,按照先弱后强的顺序注入组合调剖剂有利于提高采收率.采收率流动实验证明,调剖剂注入时机越早越有利于提高采收率.  相似文献   
3.
针对煤层气泡沫压裂液表面张力高,压裂液滞留煤层造成地层伤害的问题,研制了低表面张力氟碳表面活性剂(AS-3).实验测定AS-3溶液的表面张力、吸附量、泡沫综合值和悬浮性能,结果表明:质量分数0.3%的AS-3溶液表面张力为16.23 mN/m;在煤表面达到吸附平衡时,饱和吸附量为17.70 mg/g; AS-3水溶液对粒径超过100目的煤粉具有良好悬浮能力.AS-3溶液性能良好,配液简单,适用于煤层气等非常规储层的压裂.  相似文献   
4.
针对赵凹油田安棚主体区主力油层水窜严重的开发现状,通过室内实验方法,研制了适用于其油藏条件的冻胶泡沫调驱体系,该体系主要包括耐高温起泡剂和冻胶稳泡体系,即由质量分数为0.2%~0.3%的HN-1起泡剂、0.25%~0.35%的KY-6梳形聚合物和0.6%~0.8%的YG103酚醛树脂交联剂复配而成,并优化了冻胶泡沫的注入方式、气液比和注气速度,评价了冻胶泡沫的驱油性能,形成了适用于赵凹油田油藏条件的耐高温冻胶泡沫调驱技术.评价结果表明:酚醛树脂冻胶体系作为耐高温冻胶泡沫的稳泡体系,具有较好的稳泡效果,能够大幅度提高泡沫的半衰期;与分段塞注入方式相比,气液混注方式产生的冻胶泡沫具有更好的封堵性能;冻胶泡沫的最佳气液比为1∶1,气液比过高或过低均会导致冻胶泡沫的阻力系数和封堵能力下降;最佳注气速度为0.5 mL/min,注气速度过高或过低均会使冻胶泡沫封堵能力下降.驱油实验结果表明,冻胶泡沫调驱体系具有良好的选择性封堵性能,剖面改善率达99%,采收率提高了44.6%.  相似文献   
5.
阴阳离子聚合物在地层中的吸附性能是评价其堵水效果的主要指标,因此通过室内实验研究了阴阳离子聚合物的静态、动态吸附规律。结果表明:阴离子聚合物的吸附平衡时间为6 h,吸附平衡质量浓度为1000 mg/L;阳离子聚合物的吸附平衡时间为8 h,吸附平衡浓度为1500 mg/L;温度对阴阳离子聚合物吸附量的影响较小,阴阳离子聚合物在水湿岩心的吸附量远大于其在油湿岩心的吸附量。单一注入阴离子聚合物、交替注入阴/阳离子聚合物、单一注入阳离子聚合物和交替注入阳/阴离子聚合物的动态吸附量分别为61.77、103.99、119.64和137.61μg/g。阴阳离子聚合物可在岩心形成多层吸附膜,交替注入阳/阴离子聚合物可提高采收率达60%。2010年在河南油田双浅6井开展矿场试验,共注入阳/阴离子聚合物3个轮次,降水增油效果较好,达到温和控水的目的。  相似文献   
6.
常规冻胶在高温高盐环境中的变化及应用方法研究   总被引:1,自引:0,他引:1  
分别用一种油田回注污水(矿化度1.07×105mg/L,其中Ca2 2.73×103mg/L,Mg2 331mg/L)和一种清水(矿化度2.17×104mg/L,Ca2 565mg/L,Mg2 183mg/L)配制Cr3 HPAM和醛醛树脂 HPAM成胶溶液,密闭状态下在85℃放置90d,观测形成的冻胶形态变化并测定冻胶强度。这些冻胶在高温高盐环境中20~30d开始脱水,60~75d停止脱水,强度逐渐降低,但酚醛冻胶特别是清水酚醛冻胶脱水量小,强度下降幅度也小。在具纵向高渗透条带的人造岩心上,用回注污水驱油后直接或在清水前置段塞(0.2PV)之后注入0.2PV冻胶,用污水驱替,测定采收率,对于两种冻胶,采用清水前置液 清水冻胶方式时采收率都最高,其中酚醛冻胶调剖的采收率又高于铬冻胶调剖。在采用清水前置液 清水酚醛冻胶方式调剖之后,注入0.1PV3000mg/L表面活性剂A6溶液,采收率提高7%。冻胶强度用自制的筛网式测量装置GSD 100测定,介绍了装置的结构。图7表2参8。  相似文献   
7.
表面活性剂渗吸作用是提高致密油基质原油动用的重要方法.为了揭示致密油基质-裂缝模型中表面活性剂渗吸提高原油动用特征,通过自发渗吸、界面张力及润湿性的测定,优选0.05%的椰油酰胺丙基磺基甜菜碱(ASB)作为渗吸用表面活性剂.通过基质-裂缝岩心模型及微流控模型,分别研究了裂缝迂曲度及缝内流速对近缝基质动态渗吸提高原油动用...  相似文献   
8.
聚合物驱后增产技术研究   总被引:3,自引:2,他引:3  
针对聚合物驱后提高采收率问题,在孤岛油田研究了3种增产技术,分别是高效洗油技术、聚合物絮凝再利用技术、深部调剖技术。采用年板模型模拟油藏非均质特点,改变各作业剂注入孔隙体积倍数,比较其采收率增值和经济效果。研究表明:聚合物驱后采用上述技术可以进一步提高采收率,各作业剂用量需要优化,才能最大限度提高开发效果,提高波及系数的增油效果较提高洗油效率更为明显。  相似文献   
9.
常规冻胶体系在钙镁离子含量较高的海上油田的稳定性较差。为了提高冻胶的耐钙镁盐能力, 制备了一种由耐温非离子聚合物 KF、 有机醛类交联剂 REL和有机酚类交联剂 MNE和稳定剂 WZ组成的耐温耐盐有机交联聚合物体系。利用成冻强度代码法和突破真空度法考察了聚合物质量分数、 交联剂质量分数、 稳定剂质量分数、 温度、 矿化度等因素对体系性能的影响。在此基础上优化出了 130℃条件下适于某油田的冻胶体系配方:0.3%~0.6%耐温聚合物 KF+0.3%~0.9%交联剂 REL+交联剂 0.3%~0.9%MNE+2%稳定剂 WZ, 该体系成胶时间4~50 h 可调, 成冻强度在 0.040~0.089 MPa 可调。配方为 0.6%聚合物 KF+0.6%交联剂 REL+0.6%交联剂MNE+2%稳定剂 WZ的成胶体系在高温 (130℃)、 高矿化度 (一价盐 2.0×105 mg/L或二价盐 8.0×103 mg/L) 条件下老化 30 d体积保留率大于 90%; 经不同程度的岩心剪切后放置在 130℃条件下老化 30 d未发生脱水现象, 且水驱10 PV封堵率仍保持 90%以上, 显示出较好的耐温抗盐性能和持续封堵能力。图6表5参10  相似文献   
10.
国内页岩油以中国陆相沉积为主,地质条件复杂多变,且地质工程甜点评价要素多元,为页岩油甜点综合评价带来了困难。以渤海盆地渤南洼陷为例,基于灰色关联理论,筛选出了页岩厚度、总有机碳含量、镜质体反射率、孔隙度、热解游离烃含量、原油密度、原油黏度、地层压力和脆性指数等9个评价指标,分析了评价指标间的相关性,优化了各评价指标的权重,计算了综合评价指数,实现了页岩油甜点的综合性、定量化精准评价。分析结果显示:渤南洼陷页岩油综合评价指数高值主要分布于XYS9—Y182—Y187井区、Y283井区南部及L42井区周围,整体向南、向北综合评价指数逐渐降低,综合评价指数与单井产量具有较好的相关性,能够较好地匹配渤南洼陷页岩油单井产量;BYP5井综合评价指数自上而下整体减小,与示踪剂监测的产量贡献率趋势一致,两者具有较好的相关性。研究结果表明,页岩油水平井完井后,通过计算综合评价指数,可以及时、准确地评价水平段的甜点段,指导页岩油水平井压裂施工。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号