首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   10篇
生物科学   110篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   11篇
  2010年   12篇
  2009年   1篇
  2008年   6篇
  2007年   6篇
  2006年   1篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   6篇
  1999年   1篇
  1997年   2篇
  1996年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1986年   2篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
排序方式: 共有110条查询结果,搜索用时 0 毫秒
1.
We previously reported that broad band UV radiation or narrow bands of UV (Hbw 3 nm) of wavelengths 250 to 320 nm cause a systemic suppression of contact hypersensitivity (CHS) in mice, observed when the contact sensitizer is applied to a nonirradiated site. To determine if this effect is associated with UV-induced alterations in epidermal Langerhans cell (LC) numbers and morphology, we performed the following study. LC were identified by ATPase staining of EDTA-separated epidermal sheets. Electron microscope studies confirmed that this method was a satisfactory indicator of the presence of LC; we found no evidence for LC which did not stain for ATPase in either irradiated or unirradiated epidermis. Mice were irradiated on the back with narrow band UV of peak wavelength 270, 290, or 320 nm. The irradiated skin was excised 24 hr later and was stained as described. The number of LC with ATPase staining dendrites and the number of nondendritic LC were enumerated. We found that UV radiation of 270 or 290 nm caused 1) an alteration in LC morphology (loss of dendrites) and 2) a decrease in the total number of epidermal LC. Both effects occurred in a dose-dependent fashion. Previously, these same wavelengths of narrow band UV, but at higher doses, had been shown to cause systemic suppression of CHS. In this study, the doses of 270 or 290 nm UV that resulted in the decreased LC numbers and alterations in LC morphology described above were insufficient to cause systemic suppression of CHS. The converse was found if the irradiating waveband of UV had a peak at 320 nm. A dose of 320 nm UV that caused 50% systemic suppression of CHS had no effect on either the number or the morphology of LC at the site of irradiation. In addition, the number and morphology of LC were unaffected in the ventral epidermis (site of contact sensitization) of mice that had been previously irradiated on the back with a systemically suppressive dose of UV. We conclude: (a) UV-induced alterations in the number and morphology of LC at the site of irradiation are not necessary for the generation of systemic suppression of CHS by UV radiation; this indicates that the initial UV-absorbing event triggering systemic suppression is neither a loss of, nor morphologic alterations to, LC at the irradiation site. (b) A systemic effect of UV radiation on the number and morphology of LC at the unirradiated site of contact sensitization does not occur, and thus is not responsible for the UV-induced systemic suppression of CHS by UV radiation.  相似文献   
2.
    
Cell capacity for cytosolic NADPH regeneration by NADP‐dehydrogenases was investigated in the leaves of two hybrid poplar (Populus deltoides × Populus nigra) genotypes in response to ozone (O3) treatment (120 ppb for 17 days). Two genotypes with differential O3 sensitivity were selected, based on visual symptoms and fallen leaves: Robusta (sensitive) and Carpaccio (tolerant). The estimated O3 flux (POD0), that entered the leaves, was similar for the two genotypes throughout the treatment. In response to that foliar O3 flux, CO2 assimilation was inhibited to the same extent for the two genotypes, which could be explained by a decrease in Rubisco (EC 4.1.1.39) activity. Conversely, an increase in PEPC (EC 4.1.1.31) activity was observed, together with the activation of certain cytosolic NADP‐dehydrogenases above their constitutive level, i.e. NADP‐G6PDH (EC 1.1.1.49), NADP‐ME (malic enzyme) (EC 1.1.1.40) and NADP‐ICDH (NADP‐isocitrate dehydrogenase) (EC1.1.1.42). However, the activity of non‐phosphorylating NADP‐GAPDH (EC 1.2.1.9) remained unchanged. From the 11th fumigation day, NADP‐G6PDH and NADP‐ME profiles made it possible to differentiate between the two genotypes, with a higher activity in Carpaccio than in Robusta. At the same time, Carpaccio was able to maintain high levels of NADPH in the cells, while NADPH levels decreased in Robusta O3‐treated leaves. All these results support the hypothesis that the capacity for cells to regenerate the reducing power, especially the cytosolic NADPH pool, contributes to improve tolerance to high ozone exposure.  相似文献   
3.
Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.  相似文献   
4.
Contribution of Langerhans cell-derived IL-18 to contact hypersensitivity   总被引:4,自引:0,他引:4  
The epidermal Langerhans cells (LC), a member of the dendritic cell family, and the LC-derived cytokine IL-12 play a pivotal role in the initiation of contact hypersensitivity (CHS), a Th1 immune response in the skin. Because IL-18, another LC-derived cytokine, shares functional and biological properties with IL-12, we examined a potential role for IL-18 in CHS initiation. Our studies demonstrated that during the induction phase of murine CHS, IL-18 mRNA was significantly up-regulated in the skin-draining lymph nodes (LN). Migratory hapten-modified LC in LN expressed high levels of IL-18 mRNA and secreted functional IL-18 protein. LN cells produced significant amounts of IFN-gamma following in vitro IL-12 stimulation, which could be partially blocked by anti-IL-18 Ab, suggesting a synergistic role for endogenous IL-18 in IFN-gamma production by LN cells. Because mature IL-18 requires cleavage of immature precursors by caspase-1, we further examined IL-12-induced IFN-gamma production in caspase-1(-/-) LN cells. An impaired IFN-gamma production was seen in caspase-1(-/-) LN cells, which could be restored by addition of exogenous IL-18, supporting a role for caspase-1-cleaved, mature IL-18 in IFN-gamma production. Finally, in vivo studies showed that CHS responses were significantly inhibited in mice treated with neutralizing IL-18 Ab as well as in caspase-1(-/-) mice deficient in mature IL-18, indicating functional relevance for IL-18 in CHS. Taken together, our studies demonstrate that LC-derived IL-18 significantly contributes to CHS initiation.  相似文献   
5.
The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER–mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.  相似文献   
6.
Mumps virus (MuV) is highly neurotropic and was the leading cause of aseptic meningitis in the Western Hemisphere prior to widespread use of live attenuated MuV vaccines. Due to the absence of markers of virus neuroattenuation and neurovirulence, ensuring mumps vaccine safety has proven problematic, as demonstrated by the occurrence of aseptic meningitis in recipients of certain vaccine strains. Here we examined the genetic basis of MuV neuroattenuation and neurovirulence by generating a series of recombinant viruses consisting of combinations of genes derived from a cDNA clone of the neurovirulent wild-type 88-1961 strain (r88) and from a cDNA clone of the highly attenuated Jeryl Lynn vaccine strain (rJL). Testing of these viruses in rats demonstrated the ability of several individual rJL genes and gene combinations to significantly neuroattenuate r88, with the greatest effect imparted by the rJL nucleoprotein/matrix protein combination. Interestingly, no tested combination of r88 genes, including the nucleoprotein/matrix protein combination, was able to convert rJL into a highly neurovirulent virus, highlighting mechanistic differences between processes involved in neuroattenuation and neurovirulence.  相似文献   
7.
The ΔF508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and ΔF508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because ΔF508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and ΔF508 constructs, and the ΔF508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide 1H/2H exchange rates in matched F508 and ΔF508 constructs reveal that ΔF508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the ΔF508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-ΔF508 structures but completely solvent exposed in all ΔF508 structures. These results reinforce the importance of the perturbation ΔF508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased exposure of the 509-511 loop and increased dynamics in its vicinity could promote aggregation in vitro and aberrant intermolecular interactions that impede trafficking in vivo.  相似文献   
8.
    
Export of RNA from the cell nucleus to the cytoplasm occurs through nuclear pore complexes (NPCs). To examine nuclear export of RNA, we have gold-labeled different types of RNA (i.e., mRNA, tRNA, U snRNAs), and followed their export by electron microscopy (EM) after their microinjection into Xenopus oocyte nuclei. By changing the polarity of the negatively charged colloidal gold, complexes with mRNA, tRNA, and U1 snRNA can be formed efficiently, and gold-tagged RNAs are exported to the cytoplasm with kinetics and specific saturation behavior similar to that of unlabeled RNAs. U6 snRNA conjugates, in contrast, remain in the nucleus, as does naked U6 snRNA. During export, RNA-gold was found distributed along the central axis of the NPC, within the nuclear basket, or accumulated at the nuclear and cytoplasmic periphery of the central gated channel, but not associated with the cytoplasmic fibrils. In an attempt to identify the initial NPC docking site(s) for RNA, we have explored various conditions that either yield docking of import ligands to the NPC or inhibit the export of nuclear RNAs. Surprisingly, we failed to observe docking of RNA destined for export at the nuclear periphery of the NPC under any of these conditions. Instead, each condition in which export of any of the RNA-gold conjugates was inhibited caused accumulation of gold particles scattered uniformly throughout the nucleoplasm. These results point to the existence of steps in export involving mobilization of the export substrate from the nucleoplasm to the NPC.  相似文献   
9.
10.
Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) is an evolutionary conserved protein kinase that coordinates cellular metabolism with metabolic demand in yeast and mammals. The molecular mechanisms underlying PASK regulation, however, remain unknown. Herein, we describe a crystal structure of the kinase domain of human PASK, which provides insights into the regulatory mechanisms governing catalysis. We show that the kinase domain adopts an active conformation and has catalytic activity in vivo and in vitro in the absence of activation loop phosphorylation. Using site-directed mutagenesis and structural comparison with active and inactive kinases, we identified several key structural features in PASK that enable activation loop phosphorylation-independent activity. Finally, we used combinatorial peptide library screening to determine that PASK prefers basic residues at the P-3 and P-5 positions in substrate peptides. Our results describe the key features of the PASK structure and how those features are important for PASK activity and substrate selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号