首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
生物科学   58篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   9篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1990年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有58条查询结果,搜索用时 13 毫秒
1.
In Saccharomyces cerevisiae the first two reactions of the pyrimidine pathway are catalyzed by a multifunctional protein which possesses carbamylphosphate synthetase and aspartate transcarbamylase activities. Genetic and proteolysis studies suggested that the ATCase activity is carried out by an independently folded domain. In order to provide structural information for ongoing mutagenesis studies, a model of the three-dimensional structure of this domain was generated on the basis of the known X-ray structure of the related catalytic subunit from E. coli ATCase. First, a model of the catalytic monomer was built and refined by energy minimization. In this structure, the conserved residues between the two proteins were found to constitute the hydrophobic core whereas almost all the mutated residues are located at the surface. Then, a trimeric structure was generated in order to build the active site as it lies at the interface between adjacent chains in the E. coli catalytic trimer. After docking a bisubstrate analog into the active site, the whole structure was energy minimized to regularize the interactions at the contact areas between subunits. The resulting model is very similar to that obtained for the E. coli catalytic trimer by X-ray crystallography, with a remarkable conservation of the structure of the active site and its vicinity. Most of the interdomain and intersubunit interactions that are essential for the stability of the E. coli catalytic trimer are maintained in the yeast enzyme even though there is only 42% identity between the two sequences. Free energy calculations indicate that the trimeric assembly is more stable than the monomeric form. Moreover an insertion of four amino acids is localized in a loop which, in E. coli ATCase, is at the surface of the protein. This insertion exposes hydrophobic residues to the solvent. Interestingly, such an insertion is present in all the eukaryotic ATCase genes sequenced so far, suggesting that this region is interacting with another domain of the multifunctional protein. © 1994 Wiley-Liss, Inc.  相似文献   
2.
Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, using RT-PCR analysis, we examine the metamorphic RNA levels of two membrane-type MMPs (MT1-MMP, MT3-MMP), two TIMPs (TIMP-2, TIMP-3) and a potent gelatinase (Gel-A) that can be activated by the combinatory activity of a MT-MMP and a TIMP. In the metamorphic tail and intestine the RNA levels of TIMP-2 and MT1-MMP mirror each other, and closely resemble that of Gel-A as all three are elevated during periods of cell death and proliferation. Conversely, MT3-MMP and TIMP-3 do not have similar RNA level patterns nor do they mimic the RNA levels of the other genes examined. Intriguingly, TIMP-3, which has been shown to have anti-apoptotic activity, is found at low levels in tissues during periods of apoptosis.  相似文献   
3.
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.  相似文献   
4.
Different possibilities for converting pregnenolone triacetate to prednisolone using immobilized preparations of Flavobacterium dehydrogenans, Curvularia lunata and Arthrobacter simpelex in a fixed-bed loop reactor were investigated. The effects of the carrier, substrate concentration, pH and temperature on the rate of the substrate conversion were studied also. The biotransformations were performed with a continuous or semicontinuous substrate supply. A convenient pathway for the formation of prednisolone is proposed on the basis of the results obtained. Received: 8 July 1996 / Accepted: 5 August 1996  相似文献   
5.
6.
Summary Galanthamin is a medical important alkaloid. Its chemical synthesis gives a racemic product in low yields. Starting with a belladinderivative an enzymatic ring closure should lead exclusively to a chiral product possibly with the native structure. Although this reactions type is unknown in preparative biotransformations a large number of microorganisms were tested, unfortunately without success. On the other hand in the screen transformation products were found resulting from specific dealkylations of the subtrate. The type of metabolite formed was dependent on the fungi utilized for the transformation. Additionally two N-oxides were formed by Septomyxa affinis, one in good yield. It is possible that the chirality of this compound can direct the ring closure preferentially or exclusively to the desired stereoisomer of narwedine.  相似文献   
7.
Trask/CDCP1 is a transmembrane protein with a large extracellular and small intracellular domains. The intracellular domain (ICD) undergoes tyrosine phosphorylation by Src kinases during anchorage loss and, when phosphorylated, Trask functions to inhibit cell adhesion. The extracellular domain (ECD) undergoes proteolytic cleavage by serine proteases, although the functional significance of this remains unknown. There is conflicting evidence regarding whether it functions to signal the phosphorylation of the ICD. To better define the structural determinants that mediate the anti-adhesive functions of Trask, we generated a series of deletion mutants of Trask and expressed them in tet-inducible cell models to define the structural elements involved in cell adhesion signaling. We find that the ECD is dispensable for the phosphorylation of the ICD or for the inhibition of cell adhesion. The anti-adhesive functions of Trask are entirely embodied within its ICD and are specifically due to tyrosine phosphorylation of the ICD as this function is completely lost in a phosphorylation-defective tyrosine-phenylalanine mutant. Both full length and cleaved ECDs are fully capable of phosphorylation and undergo phosphorylation during anchorage loss and cleavage is not an upstream signal for ICD phosphorylation. These data establish that the anti-adhesive functions of Trask are mediated entirely through its tyrosine phosphorylation. It remains to be defined what role, if any, the Trask ECD plays in its adhesion functions.  相似文献   
8.
9.
    
The 3-dimensional optimization of the electrostatic interactions between the charged amino acid residues was studied by Monte Carlo simulations on an extended representative set of 141 protein structures with known atomic coordinates. The proteins were classified by different functional and structural criteria, and the optimization of the electrostatic interactions was analyzed. The optimization parameters were obtained by comparison of the contribution of charge-charge interactions to the free energy of the native protein structures and for a large number of randomly distributed charge constellations obtained by the Monte Carlo technique. On the basis of the results obtained, one can conclude that the charge-charge interactions are better optimized in the enzymes than in the proteins without enzymatic functions. Proteins that belong to the mixed αβ folding type are electrostatically better optimized than pure α-helical or β-strand structures. Proteins that are stabilized by disulfide bonds show a lower degree of electrostatic optimization. The electrostatic interactions in a native protein are effectively optimized by rejection of the conformers that lead to repulsive charge-charge interactions. Particularly, the rejection of the repulsive contacts seems to be a major goal in the protein folding process. The dependence of the optimization parameters on the choice of the potential function was tested. The majority of the potential functions gave practically identical results.  相似文献   
10.
    
Understanding the effects of mutation on pH‐dependent protein binding affinity is important in protein design, especially in the area of protein therapeutics. We propose a novel method for fast in silico mutagenesis of protein–protein complexes to calculate the effect of mutation as a function of pH. The free energy differences between the wild type and mutants are evaluated from a molecular mechanics model, combined with calculations of the equilibria of proton binding. The predicted pH‐dependent energy profiles demonstrate excellent agreement with experimentally measured pH‐dependency of the effect of mutations on the dissociation constants for the complex of turkey ovomucoid third domain (OMTKY3) and proteinase B. The virtual scanning mutagenesis identifies all hotspots responsible for pH‐dependent binding of immunoglobulin G (IgG) to neonatal Fc receptor (FcRn) and the results support the current understanding of the salvage mechanism of the antibody by FcRn based on pH‐selective binding. The method can be used to select mutations that change the pH‐dependent binding profiles of proteins and guide the time consuming and expensive protein engineering experiments. As an application of this method, we propose a computational strategy to search for mutations that can alter the pH‐dependent binding behavior of IgG to FcRn with the aim of improving the half‐life of therapeutic antibodies in the target organism. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号