首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1657篇
  免费   127篇
生物科学   1784篇
  2022年   7篇
  2021年   10篇
  2020年   7篇
  2019年   9篇
  2018年   19篇
  2017年   25篇
  2016年   23篇
  2015年   43篇
  2014年   55篇
  2013年   103篇
  2012年   81篇
  2011年   98篇
  2010年   43篇
  2009年   47篇
  2008年   101篇
  2007年   92篇
  2006年   76篇
  2005年   91篇
  2004年   91篇
  2003年   83篇
  2002年   84篇
  2001年   47篇
  2000年   58篇
  1999年   49篇
  1998年   29篇
  1997年   35篇
  1996年   20篇
  1995年   34篇
  1994年   15篇
  1993年   7篇
  1992年   22篇
  1991年   24篇
  1990年   27篇
  1989年   16篇
  1988年   21篇
  1987年   20篇
  1986年   11篇
  1985年   22篇
  1984年   21篇
  1983年   7篇
  1982年   12篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   21篇
  1976年   8篇
  1975年   4篇
  1974年   10篇
  1973年   4篇
  1972年   7篇
排序方式: 共有1784条查询结果,搜索用时 0 毫秒
1.
We previously reported the identification of DP-1 isoforms (α and β), which are structurally C-terminus-deleted ones, and revealed the low-level expression of these isoforms. It is known that wild-type DP-1 is degraded by the ubiquitin-proteasome system, but few details are known about the domains concerned with the protein stability/instability for the proteolysis of these DP-1 isoforms. Here we identified the domains responsible for the stability/instability of DP-1. Especially, the DP-1 “Stabilon” domain was a C-terminal acidic motif and was quite important for DP-1 stability. Moreover, we propose that this DP-1 Stabilon may be useful for the stability of other nuclear proteins when fused to them.  相似文献   
2.
M Nakasako  M Odaka  M Yohda  N Dohmae  K Takio  N Kamiya  I Endo 《Biochemistry》1999,38(31):9887-9898
The crystal structure analysis of the Fe-type nitrile hydratase from Rhodococcus sp. N-771 revealed the unique structure of the enzyme composed of the alpha- and beta-subunits and the unprecedented structure of the non-heme iron active center [Nagashima, S., et al. (1998) Nat. Struct. Biol. 5, 347-351]. A number of hydration water molecules were identified both in the interior and at the exterior of the enzyme. The study presented here investigated the roles of the hydration water molecules in stabilizing the tertiary and the quaternary structures of the enzyme, based on the crystal structure and the results from a laser light scattering experiment for the enzyme in solution. Seventy-six hydration water molecules between the two subunits significantly contribute to the alphabeta heterodimer formation by making up the surface shape, forming extensive networks of hydrogen bonds, and moderating the surface charge of the beta-subunit. In particular, 20 hydration water molecules form the extensive networks of hydrogen bonds stabilizing the unique structure of the active center. The amino acid residues hydrogen-bonded to those hydration water molecules are highly conserved among all known nitrile hydratases and even in the homologous enzyme, thiocyanate hydrolase, suggesting the structural conservation of the water molecules in the NHase family. The crystallographic asymmetric unit contained two heterodimers connected by 50 hydration water molecules. The heterotetramer formation in crystallization was clearly explained by the concentration-dependent aggregation state of NHase found in the light scattering measurement. The measurement proved that the dimer-tetramer equilibrium shifted toward the heterotetramer dominant state in the concentration range of 10(-2)-1.0 mg/mL. In the tetramer dominant state, 50 water molecules likely glue the two heterodimers together as observed in the crystal structure. Because NHase exhibits a high abundance in bacterial cells, the result suggests that the heterotetramer is physiologically relevant. In addition, it was revealed that the substrate specificity of this enzyme, recognizing small aliphatic substrates rather than aromatic ones, came from the narrowness of the entrance channel from the bulk solvent to the active center. This finding may give a clue for changing the substrate specificity of the enzyme. Under the crystallization condition described here, one 1,4-dioxane molecule plugged the channel. Through spectroscopic and crystallographic experiments, we found that the molecule prevented the dissociation of the endogenous NO molecule from the active center even when the crystal was exposed to light.  相似文献   
3.
High phosphate accumulating bacteria were isolated by autoradiography. One isoate, Arthrobacter globiformis PAB-6 accumulated phosphate intracellularly at 20% of dry cell mass in a simple synthetic medium. This amount was 3~7 times higher than type cultures examined. Almost no phosphate was released into the medium after cessation of growth. Fifty percent of total intracellular phosphate was fractionated as nucleic acids, while 20% each was recovered from cold PCA soluble fractions and polyphosphate fractions. The large content of nucleic acids in this bacterium appeared due to increased RNA content, specifically 4 S RNA fraction.  相似文献   
4.
Using the coil planet centrifugation method, the mechanism of hemolysis by alcohols and saponin was investigated. With this technique, erythrocytes are introduced into a gradient of hemolytic agents in saline, which is prepared in a long coiled polyethylene tube. The tube is centrifuged so that the cells move from a low to a high concentration of hemolytic agent. When the cells lyse, they release hemoglobin which remains stationary, and therefore hemolytic potency can be determined spectrophotometrically by the distance the cells move before lysing. We found that alcohols caused hemolysis at a particular concentration, whereas saponin-induced hemolysis was dependent on the amount of saponin accumulated in the environment of the cell. In addition, alcohols with longer carbon chains were more potent hemolytic agents than those with shorter chains, but each additional carbon group produced less of an increase in hemolysis per mole of alcohol. This chain-length dependency is consistent with a previous study on in vivo alcohol-induced hemolysis. The coil planet centrifugation method is also adaptable to comparative studies on the mechanism of other types of hemolysis, such as immune or drug-induced lysis, and to toxicological studies.  相似文献   
5.
"Cap" on the tip of Salmonella flagella   总被引:5,自引:0,他引:5  
Flagellar filaments isolated intact from a Salmonella short-flagella mutant are unable to serve as nuclei for flagellin polymerization in vitro, whereas the filaments reconstructed in vitro from the mutant flagellin are able to do so. The inability of intact flagella to nucleate flagellin polymerization appears to be common to wild-type bacteria and thus suggests that the tip of intact flagella are generally inactivated or capped in vivo. Careful observations of the tips of intact flagella and reconstructed flagellar filaments of a wild-type species have revealed marked difference between them: the intact flagella usually have blunt ends, whereas reconstructed filaments have concave, "fish-tail" ends. Moreover, a thin structure is often observed attaching to the very end of the intact flagella. We suspect that this "capping" structure is essential to the elongation mechanism of flagellar filaments.  相似文献   
6.
X-ray diffraction photographs of a chicken gizzard G-actin.DNase I complex crystal have been recorded using the synchrotron radiation beam emitted by the Synchrotron Radiation Source at Daresbury and the Photon Factory at Tsukuba. The resolution limit was extended to 2.4 A and the exposure time was reduced approximately by a factor of 10, when data recorded at the Photon Factory, were compared with those recorded with a conventional rotating-anode source. Using a newly designed Weissenberg camera equipped with a multi-layer line screen, the diffraction data in a 36 degrees oscillation range were recorded on a single film up to 3.5 A resolution.  相似文献   
7.
8.
When detergent-extracted, demembranated cell models of Chlamydomonas were resuspended in reactivation solutions containing less than 10(-8) M Ca++, many models initially swam in helical paths similar to those of intact cells; others swam in circles against the surface of the slide or coverslip. With increasing time after reactivation, fewer models swam in helices and more swam in circles. This transition from helical to circular swimming was the result of a progressive inactivation of one of the axonemes; in the extreme case, one axoneme was completely inactive whereas the other beat with a normal waveform. At these low Ca++ concentrations, the inactivated axoneme was the trans-axoneme (the one farthest from the eyespot) in 70-100% of the models. At 10(-7) or 10(-6) M Ca++, cell models also proceeded from helical to circular swimming as a result of inactivation of one of the axonemes; however, under these conditions the cis-axoneme was usually the one that was inactivated. At 10(-8) M Ca++, most cells continued helical swimming, indicating that both axonemes were remaining relatively active. The progressive, Ca++-dependent inactivation of the trans- or cis-axoneme was reversed by switching the cell models to higher or lower Ca++ concentrations, respectively. A similar reversible, selective inactivation of the trans-flagellum occurred in intact cells swimming in medium containing 0.5 mM EGTA and no added Ca++. The results show that there are functional differences between the two axonemes of Chlamydomonas. The differential responses of the axonemes to submicromolar concentrations of Ca++ may form the basis for phototactic turning.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号