首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   12篇
生物科学   134篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   9篇
  2013年   10篇
  2012年   13篇
  2011年   8篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   14篇
  2006年   5篇
  2005年   5篇
  2004年   11篇
  2003年   7篇
  2002年   5篇
  1998年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
1.
2.
Changes in neutral amino acid transport activity caused by addition of phytohaemagglutinin-P to quiescent peripheral pig lymphocytes have been evaluated by measurements of 14C-labelled neutral and analogue amino acids under conditions approaching initial entry rates. Utilizing methylaminoisobutyric acid, the best model substrate of System A, we confirmed our previous report (Borghetti, A.F., Kay, J.E. and Wheeler, K.P. (1979) Biochem. J. 182, 27–32) on the absence of this transport system in quiescent cells and its emergence following stimulation. Furthermore, we demonstrated the presence in quiescent cells of an Na+-dependent transport system for neutral amino acids that has been characterized as System ASC by several criteria including intolerance to methylaminoisobutyric acid, strict Na+-dependence, the property of transtimulation and specificity for pertinent substrates such as alanine, serine, cysteine and threonine. Analysis of the relationship between influx and substrate concentration revealed that two independent saturable components contribute to entry of alanine in quiescent cells: a low affinity (Km = ≈4 mM) and a high affinity (Km = ≈0.2 mM) component. The high affinity component could be inhibited in a competitive way by serine, cysteine and threonine, but methylaminoisobutyric acid did not change appreciably its constants. The enhanced activity of alanine transport through the ASC system observed in activated cells resulted from a large increase in the capacity (V) of the high affinity component without any substantial change in the apparent affinity constant (Km).  相似文献   
3.
Several lines of evidence suggest an association between oxidative DNA-damage repair capacity and cancer risk. In particular, a DNA-glycosylase assay for removal of 8-oxoguanine (8-oxoG) in peripheral blood mononuclear cells (PBMC) has been successfully applied to identify populations with increased risk for lung cancer and squamous cell carcinomas of head and neck. In order to verify whether EBV-transformed lymphoblastoid cell lines (LCL) are a suitable surrogate for PBMC in specific DNA-repair phenotypic assays, a validation trial was conducted. PBMC from 20 healthy subjects were collected and an aliquot was transformed with EBV to obtain LCL. The ability of cell-free extracts from both cell types to incise a 3'-fluorescently labelled duplex oligonucleotide containing a single 8-oxoG (OGG assay) was evaluated. Since this activity is mediated predominantly by OGG1, the OGG1 gene expression was also measured. 8-oxoG DNA-glycosylase activity and OGG1 expression were significantly higher (p<0.0001) in LCL than in PBMC. However, while this assay was shown to be robust and reproducible when used on PBMC (intra-assay CV=8%), a high intra-culture variability was observed with LCL (intra-culture CV=16.8%). Neither differences on OGG1 gene expression nor the cell-cycle distribution seemed to account for this variability. Inter-individual variability of OGG activity in PBMC and LCL was not associated with OGG1 gene expression. We have therefore established a non-radioactive cleavage assay that can be easily applied to measure OGG activity in human PBMC. The use of LCL for DNA-repair genotype-phenotype correlation studies seems to be inappropriate, at least with cell-free based functional assays.  相似文献   
4.
Here we have characterized perthamide C, a cyclopeptide from a Solomon Lithistid sponge Theonella swinhoei, which displays an anti-inflammatory/immunomodulatory activity. The study has been performed using the carragenan-induced mouse paw edema that displays an early (0–6 h) and a late phase (24–96 h). Perthamide C significantly inhibits neutrophils infiltration in tissue both in the early and late phases. This effect was coupled to a reduced expression of the endothelial nitric oxide synthase (eNOS) in the early phase while cyclooxygenase-1 and 2 (COX-1, COX-2), and inducible NOS (iNOS) expression were unaffected. In the late phase perthamide C reduced expression of both NOS isoforms without affecting COXs expression. This peculiar selectivity toward the two enzymes deputed to produce NO lead us to investigate on a possible action of perthamide C on lymphocytes infiltration and activation. We found that perthamide C inhibited the proliferation of peripheral lymphocytes, and that this effect was secondary to its metabolic activation in vivo. Indeed, in vitro perthamide C did not inhibit proliferation as opposite to its metabolite perthamide H.In conclusion, perthamide C selectively interferes with NO generation triggered by either eNOS or iNOS without affecting either COX-1 or COX-2. This in turn leads to modulation of the inflammatory response through a reduction of vascular permeability, neutrophil infiltration as well as lymphocyte proliferation.  相似文献   
5.
Beckwith-Wiedemann syndrome (BWS) is a rare disorder characterized by overgrowth and predisposition to embryonal tumors. BWS is caused by various epigenetic and/or genetic alterations that dysregulate the imprinted genes on chromosome region 11p15.5. Molecular analysis is required to reinforce the clinical diagnosis of BWS and to identify BWS patients with cancer susceptibility. This is particularly crucial prenatally because most signs of BWS cannot be recognized in utero. We established a reliable molecular assay by pyrosequencing to quantitatively evaluate the methylation profiles of ICR1 and ICR2. We explored epigenotype-phenotype correlations in 19 patients that fulfilled the clinical diagnostic criteria for BWS, 22 patients with suspected BWS, and three fetuses with omphalocele. Abnormal methylation was observed in one prenatal case and 19 postnatal cases, including seven suspected BWS. Seven cases showed ICR1 hypermethylation, five cases showed ICR2 hypomethylation, and eight cases showed abnormal methylation of ICR1 and ICR2 indicating paternal uniparental disomy (UPD). More cases of ICR1 alterations and UPD were found than expected. This is likely due to the sensitivity of this approach, which can detect slight deviations in methylation from normal levels. There was a significant correlation (p < 0.001) between the percentage of ICR1 methylation and BWS features: severe hypermethylation (range: 75–86%) was associated with macroglossia, macrosomia, and visceromegaly, whereas mild hypermethylation (range: 55–59%) was associated with umbilical hernia and diastasis recti. Evaluation of ICR1 and ICR2 methylation by pyrosequencing in BWS can improve epigenotype-phenotype correlations, detection of methylation alterations in suspected cases, and identification of UPD.  相似文献   
6.
Cdc6 proteins play an essential role in the initiation of chromosomal DNA replication in Eukarya. Genes coding for putative homologs of Cdc6 have been also identified in the genomic sequence of Archaea, but the properties of the corresponding proteins have been poorly investigated so far. Herein, we report the biochemical characterization of one of the three putative Cdc6-like factors from the hyperthermophilic crenarchaeon Sulfolobus solfataricus (SsoCdc6-1). SsoCdc6-1 was overproduced in Escherichia coli as a His-tagged protein and purified to homogeneity. Gel filtration and glycerol gradient ultracentrifugation experiments indicated that this protein behaves as a monomer in solution (molecular mass of about 45 kDa). We demonstrated that SsoCdc6-1 binds single- and double-stranded DNA molecules by electrophoretic mobility shift assays. SsoCdc6-1 undergoes autophosphorylation in vitro and possesses a weak ATPase activity, whereas the protein with a mutation in the Walker A motif (Lys-59 --> Ala) is completely unable to hydrolyze ATP and does not autophosphorylate. We found that SsoCdc6-1 strongly inhibits the ATPase and DNA helicase activity of the S. solfataricus MCM protein. These findings provide the first in vitro biochemical evidence of a functional interaction between a MCM complex and a Cdc6 factor and have important implications for the understanding of the Cdc6 biological function.  相似文献   
7.
The activity of amino acid transport System A in avian fibroblasts was increased following incubation of the cells in a medium in which most of the NaCl normally present had been isoosmotically replaced by sucrose. This increase was detectable after 2 h of incubation, reached a maximum at about 4 h, and remained constant thereafter. Transfer of treated cells back to a normal medium resulted in decay of the induced transport activity, with a half-life of less than 2 h. Kinetic analysis revealed that the increase in transport activity arose from an increase in Vmax, with little change in Km. This induction of System A activity did not occur if an inhibitor of either RNA or protein synthesis was present in the modified medium. The use of various different solutes as replacements for NaCl in the incubation medium showed that, although each replacement caused a decrease in both cellular Na+ content and protein synthesis, only disaccharides produced the increase in amino acid transport activity. In addition, estimates of cell volume indicated that, even under iso-osmotic conditions, incubation in the sucrose-containing medium caused initial cell shrinkage, followed by swelling. It is concluded that this induction of System A activity is associated with a volume regulatory process and that this process probably accounts for the parallel responses previously observed when cells were incubated in hyperosmolar media. Induction of amino acid transport activity by this process is distinct from adaptive regulation, caused by amino acid starvation; but the two processes are not strictly additive, and so appear to converge at some step.  相似文献   
8.
Three different temperature sensitive mutants derived from the Syrian hamster cell line BHK 21 were found to have greatly reduced DNA synthesis at the non-permissive temperature. These mutants are distinct by complementation analysis and behave at the non-permissive temperature as cell cycle traverse defective mutants. Microfluorometric analysis of mutant populations arrested at the non-permissive temperature shows an accumulation of cells with G1 DNA content. Mutants ts 13 and ts HJ4 synchronized in G1 by serum or isoleucine deprivation and shifted to the non-permissive temperature at the time of release do not enter the S phase, while in the case of mutant ts 11 preincubation at the non-permissive temperature before release is required to completely prevent its entry into S. Ts 13 and ts 11 are able to traverse the S phase at the non-permissive temperature when synchronized at the boundary G1/S; in this case, preincubation of ts 11 at the non-permissive temperature before release does not affect the ability of these cells to perform DNA synthesis. On the other hand, ts HJ4 appears to traverse S only partially when tested under similar conditions. Temperature shift experiments of mutant populations at different times after isoleucine synchronization suggest that ts 13 and ts 11 are blocked at the non-permissive temperature in early G1, whereas ts HJ4 is probably affected near the initiation of DNA synthesis, or in some early S function.  相似文献   
9.
The eukaryotic GINS complex has an essential role in the initiation and elongation phases of genome duplication. It is composed of four paralogous subunits--Sld5, Psf1, Psf2 and Psf3--which are ubiquitous and evolutionarily conserved in eukaryotic organisms. Here, we report the biochemical characterization of the human GINS complex (hGINS). The four hGINS subunits were coexpressed in Escherichia coli in a highly soluble form and purified as a complex. hGINS was shown to interact directly with the heterodimeric human DNA primase, by using either surface plasmon resonance measurements or by immunoprecipitation experiments carried out with anti-hGINS antibodies. The DNA polymerase alpha-primase synthetic activity was specifically stimulated by hGINS on various primed DNA templates. The significance of these findings is discussed in view of the molecular dynamics at the human replication fork.  相似文献   
10.
The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2∼7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2∼7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号