首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   16篇
  国内免费   2篇
生物科学   346篇
  2023年   2篇
  2022年   7篇
  2021年   13篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   7篇
  2015年   15篇
  2014年   20篇
  2013年   13篇
  2012年   23篇
  2011年   21篇
  2010年   16篇
  2009年   13篇
  2008年   12篇
  2007年   19篇
  2006年   16篇
  2005年   12篇
  2004年   10篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   6篇
  1990年   11篇
  1989年   5篇
  1988年   1篇
  1987年   4篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1975年   4篇
排序方式: 共有346条查询结果,搜索用时 0 毫秒
1.
G P Kaushal  A D Elbein 《Biochemistry》1987,26(24):7953-7960
The beta-mannosyltransferase that catalyzes the synthesis of Man-beta-GlcNAc-GlcNAc-PP-dolichol from GDP-mannose and dolichyl-PP-GlcNAc-GlcNAc was solubilized from microsomes of suspension-cultured soybean cells by treatment with 1.5% Triton X-100 and was purified about 700-fold by chromatography on DEAE-cellulose, hydroxylapatite, and a GDP affinity column. The purified enzyme was reasonably stable in the presence of 20% glycerol and 0.5 mM dithiothreitol. The enzyme required either detergent (Triton X-100 or NP-40) or phospholipid for maximum activity, but the effects of these two were not additive. Thus, either phosphatidylcholine or Triton X-100 could give maximum stimulation. In terms of phospholipid stimulation, both the head group and the acyl chain appeared to be important since phosphatidylcholines with 18-carbon unsaturated fatty acids were most effective. The purified enzyme had a sharp pH optimum of 6.9-7.0 and required a divalent cation. Mg2+ was the best metal ion with optimum activity occurring at 6 mM, but Mn2+ was reasonably effective while Ca2+ was slightly stimulatory. The Km for GDP-mannose was calculated to be 1.7 X 10(-6) M and that for dolichyl-PP-GlcNAc-GlcNAc about 9 X 10(-6) M. The enzyme was inhibited by a number of guanosine nucleotides such as GDP-glucose, GDP, GMP, and GTP, but various uridine and adenosine nucleotides were without effect. The purified enzyme was apparently free of alpha-1,3-mannosyltransferase (and perhaps other mannosyltransferases) and dolichyl-P-mannose synthase since the only product seen from dolichyl-PP-GlcNAc-GlcNAc and GDP-mannose was Man-beta-GlcNAc-GlcNAc-PP-dolichol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
The GlcNAc-1-P-transferase was solubilized from microsomal preparations of soybean cultured cells by treatment with 1% Triton X-100. The solubilized enzyme catalyzed the formation of dolichyl pyrophosphoryl-GlcNAc when incubated with UDP-GlcNAc and dolichyl phosphate. The GlcNAc-1-P-transferase activity was stimulated by the addition of phosphatidylglycerol and phosphatidylinositol, but was inhibited by phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The Km value for dolichyl-phosphate was 6.2 micromolar and that determined for UDP-GlcNAc was 0.42 micromolar. The pH optimum for the GlcNAc-1-P reaction was between 7.2 and 7.6; maximum activity occurred at about 10 millimolar Mg2+. The addition of unlabeled GDP-mannose or UDP-glucose considerably inhibited enzyme activity which could be restored to nearly the original value by addition of more dolichyl phosphate to the incubation mixture. On the other hand, the addition of unlabeled ADP-glucose and GDP-glucose enhanced the enzyme activity. This stimulation by these sugar nucleotides was found to be due to the protection of the substrate UDP-[3H]-GlcNAc from pyrophosphatase degradation. The GlcNAc-1-P-transferase reaction was very sensitive to tunicamycin and 50% inhibition required less than 1 microgram of antibiotic per milliliter. Amphomycin, showdomycin, and diumycin also inhibited this reaction but at higher concentrations.  相似文献   
3.
Target antigens in malaria transmission blocking immunity   总被引:7,自引:0,他引:7  
Malaria transmission blocking immunity has been found to operate against two distinct phases of development of malaria parasites in the mosquito midgut: (i) against the extracellular gametes and newly fertilized zygotes shortly after ingestion by a mosquito of parasitized blood and (ii) against the zygotes during their subsequent development into ookinetes. Immunity is antibody-mediated and stage-specific. A set of three proteins, synthesized in the gametocytes, expressed on the surface of the gametes and newly fertilized zygotes and subsequently shed during later transformation of the zygotes, has been identified as the target antigens of anti-gamete fertilization blocking antibodies. A single protein, synthesized and expressed on the zygote surface during its development to ookinetes, has been identified as the target of antibodies which block the development of the fertilized parasites in the mosquito. Immunization of human populations against gamete or zygote antigens, while not directly protecting an immunized individual from inflection, would reduce the transfer of malaria within the population. Such immunity, in addition to reducing the overall rate of malaria transmission, would, if combined with a vaccine against the asexual (disease-causing) stages, reduce the chance of selection of parasites that are resistant to the asexual vaccine by preventing their entry into the mosquito population.  相似文献   
4.
Mannostatin A is a metabolite produced by the microorganism Streptoverticillium verticillus and reported to be a potent competitive inhibitor of rat epididymal alpha-mannosidase. When tested against a number of other arylglycosidases, mannostatin A was inactive toward alpha- and beta-glucosidase and galactosidase as well as beta-mannosidase, but it was a potent inhibitor of jack bean, mung bean, and rat liver lysosomal alpha-mannosidases, with estimated IC50's of 70 nM, 450 nM, and 160 nM, respectively. The type of inhibition was competitive in nature. This compound also proved to be an effective competitive inhibitor of the glycoprotein-processing enzyme mannosidase II (IC50 of about 10-15 nM with p-nitrophenyl alpha-D-mannopyranoside as substrate, and about 90 nM with [3H]mannose-labeled GlcNAc-Man5GlcNAc as substrate). However, it was virtually inactive toward mannosidase I. The N-acetylated derivative of mannostatin A had no inhibitory activity. In cell culture studies, mannostatin A also proved to be a potent inhibitor of glycoprotein processing. Thus, in influenza virus infected Madin Darby canine kidney (MDCK) cells, mannostatin A blocked the normal formation of complex types of oligosaccharides on the viral glycoproteins and caused the accumulation of hybrid types of oligosaccharides. This observation is in keeping with other data which indicate that the site of action of mannostatin A is mannosidase II. Thus, mannostatin A represents the first nonalkaloidal processing inhibitor and adds to the growing list of chemical structures that can have important biological activity.  相似文献   
5.
6.
7.
An alkaline thermotolerant lipase of Bacillus coagulans BTS1 was successively purified by ammonium sulfate precipitation and DEAE anion exchange chromatography. The purified lipase immobilized in alginate beads showed an optimal activity at pH 7.5 and 55 degrees C. A pH of 5.0 or 10.0 completely quenched the activity of immobilized lipase. The alginate-bound lipase retained its activity following exposure to most of the organic solvents including amines, alkanes and alcohols. Chloride salt of Al3+, Co2+, Mg2+ and NH4+ modulated the lipase activity of alginate-immobilized enzyme. The alginate entrapped lipase showed a preferentially high activity towards p-nitrophenyl palmitate (C: 16) and activity of matrix increased following exposure to SDS. Moreover, the immobilized lipase retained more than 50% of its activity after 3rd cycle of reuse.  相似文献   
8.
The present study was designed to evaluate the influence of two commonly prescribed non-steroidal anti-inflammatory drugs (NSAIDs), aspirin and nimesulide on the biochemical composition and membrane dynamics of rat intestine. Female Wistar rats were divided into three different groups viz: Group I (Control), Group II (aspirin-treated, 50 mg/kg body weight) and Group III (nimesulide-treated, 10 mg/kg body weight). After 28 days, biochemical estimations in both drug treated groups showed an increase in sucrase, lactase, maltase and alkaline phosphatase as compared to the control. Alterations in the intestinal membrane dynamics by fluidity studies and Fourier Transform Infra Red (FTIR) spectroscopy also showed considerable changes. The alterations in the histoarchitecture of the intestine were also seen, which correlated well with the changes in structure and composition of the intestine. The use of NSAIDs like aspirin and nimesulide may cause the gastrointestinal side effects due to initial changes in the enzyme activities and membrane dynamics.  相似文献   
9.
A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa MTCC-4713 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel. The hydrogel-bound lipase achieved 93.6% esterification of ethanol and propionic acid (300 mM: 100 mM) into ethyl propionate at temperature 65 degrees C in 3 h in the presence of a molecular sieve (3 angstroms). In contrast, hydrogel-immobilized lipase pre-exposed to 5 mM of HgCl2 orNH4Cl resulted in approximately 97% conversion of reactants in 3 h into ethyl propionate under identical conditions. The salt-exposed hydrogel was relatively more efficient in repetitive esterification than the hydrogel-bound lipase not exposed to any of the cations. Moreover, bound lipase exposed Hg2+ or NH4+ ions showed altered specificity towards p-nitrophenyl esters and was more hydrolytic towards higher C-chain p-nitrophenyl esters (p-nitrophenyl laurate and p-nitrophenyl palmitate with C 12 and C 16 chain) than the immobilized lipase not exposed to any of the salts. The later showed greater specificity towards p-nitrophenyl caprylate (C 8).  相似文献   
10.
During clathrin-mediated endocytosis Hsc70, supported by the J-domain protein auxilin, uncoats clathrin-coated vesicles. Auxilin contains both a clathrin-binding domain and a J-domain that binds Hsc70, and it has been suggested that these two domains are both necessary and sufficient for auxilin activity. To test this hypothesis, we created a chimeric protein consisting of the J-domain of auxilin linked to the clathrin-binding domain of the assembly protein AP180. This chimera supported uncoating, but unlike auxilin it acted stoichiometrically rather than catalytically because, like Hsc70, it remained associated with the uncoated clathrin. This observation supports our proposal that Hsc70 chaperones uncoated clathrin by inducing formation of a stable Hsc70-clathrin-AP complex. It also shows that Hsc70 acts by dissociating individual clathrin triskelions rather than cooperatively destabilizing clathrin-coated vesicles. Because the chimera lacks the C-terminal subdomain of the auxilin clathrin-binding domain, it seemed possible that this subdomain is required for auxilin to act catalytically, and indeed its deletion caused auxilin to act stoichiometrically. In contrast, deletion of the N-terminal subdomain weakened auxilin-clathrin binding and prevented auxilin from polymerizing clathrin. Therefore the C-terminal subdomain of the clathrin-binding domain of auxilin is required for auxilin to act catalytically, whereas the N-terminal subdomain strengthens auxilin-clathrin binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号