首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
生物科学   47篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2015年   1篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有47条查询结果,搜索用时 0 毫秒
1.
International Journal of Peptide Research and Therapeutics - Acinetobacter baumannii is an important pathogen responsible for nosocomial infections worldwide. Trimeric autotransporters, the...  相似文献   
2.
ObjectivesTyphoid fever is caused by Salmonella enterica serovar Typhi. OmpC, OmpF and OmpA, the three major outer membrane proteins (OMPs), could serve as vaccine candidates.MethodsThe porins antigenicity was predicted in silico. The OMP genes were amplified, cloned and expressed. Sero-reactivities of the recombinant proteins purified by denaturing method were assayed by ELISA. BALB/c mice were immunized with the recombinant porins followed by bacterial challenge.ResultsBacterial challenge of the animal model brought about antibody triggering efficacy of the antigen in OmpF > OmpC > OmpA order. Experimental findings validated the in silico results. None of the antigens had synergic or antagonistic effects on each other from immune system induction points of view. Despite their high immunogenicity, none of the antigens was protective. However, administration of two or three antigens simultaneously resulted in retardation of lethal effect. Porins, in addition to their specific functions, share common functions. Hence, they can compensate for each other's functions.ConclusionsThe produced antibodies could not eliminate the pathogenicity by blockade of one or some of the antigens. Porin antigens are not suitable vaccine candidates alone or in denatured forms. Native forms of the antigens maybe studied for protective immunogenicity.  相似文献   
3.
A rapid, sensitive and accurate high-performance liquid chromatographic method with UV detection was developed and validated for the quantification of gabapentin in human plasma. Gabapentin was quantified using pre-column derivatization with 1-fluoro-2,4-dinitrobenzene following protein precipitation of plasma with acetonitrile. Amlodipine was used as internal standard. The chromatographic separation was carried out on a Nova-Pak C(18) column using a mixture of 50 mM NaH(2)PO(4) (pH=2.5)-acetonitrile (30:70, v/v) as mobile phase with UV detection at 360 nm. The flow rate was set at 1.5 ml/min. The method was linear over the range of 0.05-5 microg/ml of gabapentin in plasma (r(2)>0.999). The within-day and between-day precision values were in the range of 2-5%. The limit of quantification of the method was 0.05 microg/ml. The method was successfully used to study the pharmacokinetics of gabapentin in healthy volunteers.  相似文献   
4.
Cellular stress responses are frequently governed by the subcellular localization of critical effector proteins. Apoptosis-inducing Factor (AIF) or Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH), for example, can translocate from mitochondria to the nucleus, where they modulate apoptotic death pathways. Hypoxia-inducible gene domain 1A (HIGD1A) is a mitochondrial protein regulated by Hypoxia-inducible Factor-1α (HIF1α). Here we show that while HIGD1A resides in mitochondria during physiological hypoxia, severe metabolic stress, such as glucose starvation coupled with hypoxia, in addition to DNA damage induced by etoposide, triggers its nuclear accumulation. We show that nuclear localization of HIGD1A overlaps with that of AIF, and is dependent on the presence of BAX and BAK. Furthermore, we show that AIF and HIGD1A physically interact. Additionally, we demonstrate that nuclear HIGD1A is a potential marker of metabolic stress in vivo, frequently observed in diverse pathological states such as myocardial infarction, hypoxic-ischemic encephalopathy (HIE), and different types of cancer. In summary, we demonstrate a novel nuclear localization of HIGD1A that is commonly observed in human disease processes in vivo.  相似文献   
5.
The vascular extracellular matrix (ECM) is essential for the structural integrity of the vessel wall and also serves as a substrate for the binding and retention of secreted products of vascular cells as well as molecules coming from the circulation. Although proteomics has been previously applied to vascular tissues, few studies have specifically targeted the vascular ECM and its associated proteins. Thus, its detailed composition remains to be characterized. In this study, we describe a methodology for the extraction of extracellular proteins from human aortas and their identification by proteomics. The approach is based on (a) effective decellularization to enrich for scarce extracellular proteins, (b) successful solubilization and deglycosylation of ECM proteins, and (c) relative estimation of protein abundance using spectral counting. Our three-step extraction approach resulted in the identification of 103 extracellular proteins of which one-third have never been reported in the proteomics literature of vascular tissues. In particular, three glycoproteins (podocan, sclerostin, and agrin) were identified for the first time in human aortas at the protein level. We also identified extracellular adipocyte enhancer-binding protein 1, the cartilage glycoprotein asporin, and a previously hypothetical protein, retinal pigment epithelium (RPE) spondin. Moreover, our methodology allowed us to screen for proteolysis in the aortic samples based on the identification of proteolytic enzymes and their corresponding degradation products. For instance, we were able to detect matrix metalloproteinase-9 by mass spectrometry and relate its presence to degradation of fibronectin in a clinical specimen. We expect this proteomics methodology to further our understanding of the composition of the vascular extracellular environment, shed light on ECM remodeling and degradation, and provide insights into important pathological processes, such as plaque rupture, aneurysm formation, and restenosis.Vascular cells, in particular vascular smooth muscle cells, produce and maintain a complex meshwork of ECM.1 The ECM is not only the scaffold for the anchorage and mobility of residing cells but also absorbs and transduces the shear and strain forces of the blood flow. It is primarily composed of elastin, collagen, proteoglycans, and glycoproteins. The elastin fibers and type I and III fibrillar collagens form a rigid network of highly cross-linked interstitial matrix. They offer elasticity (elastin) and tensile strength (collagens). Proteoglycans, because of their negative charge, attract water and confer resistance to compression. Finally, glycoproteins participate in matrix organization and are essential for cell attachment.The vascular ECM also serves as a substrate for the binding and retention of secreted, soluble proteins of vascular cells as well as molecules coming from the circulation, including lipoproteins, growth factors, cytokines, proteases, and protease inhibitors. These components are invariably associated with ECM proteins, especially proteoglycans. Together they comprise the vascular extracellular environment and are pivotal for disease processes, such as atherosclerosis and aneurysm formation (1).Although proteomics has been previously applied to vascular tissues, only one study has specifically targeted the extracellular vascular environment (2). This study was focused on the isolation of intimal proteoglycans from human carotid arteries. Moreover, most proteomics studies use whole tissue lysates, which are rich in cellular proteins that inevitably mask the identification of the less abundant proteins of the vascular extracellular environment (35). Thus, the composition of the vascular ECM and its associated proteins remains poorly defined. In the present study, we used morphologically normal human aortic samples to develop a method for the extraction of proteins present in the extracellular environment, including ECM proteins and proteins attached to the ECM. We had three specific aims: first, to reduce the contamination with cellular proteins, thereby increasing the chance of identifying scarce extracellular proteins; second, to efficiently solubilize and deglycosylate ECM proteins to improve their analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS); and third, to interface the nanoflow LC system to a recently developed injection device, which splits the flow from the analytical column, to allow the reanalysis of the same sample during a single LC-MS/MS run (RePlay, Advion).Our methodology provides a detailed overview of the aortic ECM and its associated proteins, many reported for the first time in proteomics analysis of the vasculature. Most importantly, this method could be adapted for use with other tissues to further our understanding of the composition of extracellular environment and ECM turnover under various disease conditions.  相似文献   
6.
Progenitor cells in vascular disease   总被引:8,自引:0,他引:8  
Stem cell research has the potential to provide solutions to many chronic diseases via the field of regeneration therapy. In vascular biology, endothelial progenitor cells (EPCs) have been identified as contributing to angiogenesis and hence have therapeutic potential to revascularise ischaemic tissues. EPCs have also been shown to endothelialise vascular grafts and therefore may contribute to endothelial maintenance. EPC number has been shown to be reduced in patients with cardiovascular disease, leading to speculation that atherosclerosis may be caused by a consumptive loss of endothelial repair capacity. Animal experiments have shown that EPCs reendothelialise injured vessels and that this reduces neointimal formation, confirming that EPCs have an atheroprotective effect. Smooth muscle cell accumulation in the neointimal space is characteristic of many forms of atherosclerosis, however the source of these cells is now thought to be from smooth muscle progenitor cells (SMPCs) rather than the adjacent media. There is evidence for the presence of SMPCs in the adventitia of animals and that SMPCs circulate in human blood. There is also data to support SMPCs contributing to neointimal formation but their origin remains unknown. This article will review the roles of EPCs and SMPCs in the development of vascular disease by examining experimental data from in vitro studies, animal models of atherosclerosis and clinical studies.  相似文献   
7.
The n-3 polyunsaturated fatty acids (PUFAs) found in fish oil (FO) have been shown to protect against reperfusion arrhythmias, a manifestation of reperfusion injury, which is believed to be induced by the formation of reactive oxygen species (ROS) and intracellular calcium (Ca2+) overload. Adult rats fed a diet supplemented with 10% FO had a higher proportion of myocardial n-3 PUFAs and increased expression of antioxidant enzymes compared with the saturated fat (SF)-supplemented group. Addition of hydrogen peroxide (H2O2) to cardiomyocytes isolated from rats in the SF-supplemented group increased the proportions of cardiomyocytes contracting in an asynchronous manner, increased the rate of Ca2+ influx, and increased the diastolic and systolic [Ca2+]i compared with the FO group. H2O2 exposure increased the membrane fluidity of cardiomyocytes from the FO group. These results demonstrate that dietary FO supplementation is associated with a reduction in the susceptibility of myocytes to ROS-induced injury and this may be related to membrane incorporation of n-3 PUFAs, increased antioxidant defenses, changes in cardiomyocyte membrane fluidity, and the ability to prevent rises in cellular Ca2+ in response to ROS.  相似文献   
8.
The characterization of nematode-effective strains and cry genes in the Iranian Bacillus thuringiensis (Bt) collection (70 isolates) is presented. Characterization was based on PCR analysis using 12 specific primers for cry5, cry6, cry12, cry13, cry14, and cry21 genes encoding proteins active against nematodes, crystal morphology, and protein band patterns as well as their nematicidal activity on root-knot nematode (Meloidogyne incognita) and two free-living nematodes (Chiloplacus tenuis and Acrobeloides enoplus). PCR results with primers for these genes showed that 22 isolates (31.5%) contain a minimum of one nematode-active cry gene. Strains containing the cry6 gene were the most abundant and represent 22.8% of the isolates. Bt strains harboring cry14 genes were also abundant (14.2%). cry21 and cry5 genes were less abundant, found in 4.2% and 2.8% of the strains, respectively. In total, six different nematode-active cry gene profiles were detected in this collection. Four isolates did not show the expected PCR product size for cry5, cry6, and cry21 genes; they might contain potentially novel insecticidal crystal protein genes. Twenty-two Bt isolates containing nematode-active cry genes were selected for preliminary bioassays on M. incognita. Based on these bioassays, four isolates were selected for detailed bioassays. Isolates YD5 and KON4 at 2 x 10(8) CFU/mL concentrations showed 77% and 81% toxicity on M. incognita, respectively. The free-living nematodes C. tenuis and A. enoplus were more susceptible and the highest mortality was observed within 48 h of incubation at all of the concentrations tested. Maximum mortality was recorded for isolates SN1 and KON4 at 2 x 10(8) CFU/mL concentrations and resulted in 68% and 77% adults deaths of C. tenuis and 68% and 72% for A. enoplus, respectively. Our results showed that PCR is a useful technique for toxicity prediction of nematicidal Bt isolates.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号