首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   3篇
生物科学   81篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   4篇
  2011年   7篇
  2010年   7篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1990年   4篇
  1987年   2篇
  1964年   2篇
排序方式: 共有81条查询结果,搜索用时 0 毫秒
1.
Before birth, glucocorticoids retard growth, although the extent to which this is mediated by changes in insulin signalling pathways in the skeletal muscle of the fetus is unknown. The current study determined the effects of endogenous and synthetic glucocorticoid exposure on insulin signalling proteins in skeletal muscle of fetal sheep during late gestation. Experimental manipulation of fetal plasma glucocorticoid concentration was achieved by fetal cortisol infusion and maternal dexamethasone treatment. Cortisol infusion significantly increased muscle protein levels of Akt2 and phosphorylated Akt at Ser473, and decreased protein levels of phosphorylated forms of mTOR at Ser2448 and S6K at Thr389. Muscle GLUT4 protein expression was significantly higher in fetuses whose mothers were treated with dexamethasone compared to those treated with saline. There were no significant effects of glucocorticoid exposure on muscle protein abundance of IR-β, IGF-1R, PKCζ, Akt1, calpastatin or muscle glycogen content. The present study demonstrated that components of the insulin signalling pathway in skeletal muscle of the ovine fetus are influenced differentially by naturally occurring and synthetic glucocorticoids. These findings may provide a mechanism by which elevated concentrations of endogenous glucocorticoids retard fetal growth.  相似文献   
2.
Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs), a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P) a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ), and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source of extracellular S1P, which might act as an autocrine/paracrine signal contributing to their malignant properties.  相似文献   
3.
Previous studies demonstrated that sphingosine-1-phosphate (S1P) phosphohydrolase 1 (SPP-1), which is located mainly in the endoplasmic reticulum (ER), regulates sphingolipid metabolism and apoptosis (H. Le Stunff et al., J. Cell Biol. 158:1039-1049, 2002). We show here that the treatment of SPP-1-overexpressing cells with S1P, but not with dihydro-S1P, increased all ceramide species, particularly the long-chain ceramides. This was not due to inhibition of ceramide metabolism to sphingomyelin or monohexosylceramides but rather to the inhibition of ER-to-Golgi trafficking, determined with the fluorescent ceramide analog N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (DMB-Cer). Fumonisin B1, an inhibitor of ceramide synthase, prevented S1P-induced elevation of all ceramide species and corrected the defect in ER transport of DMB-Cer, readily allowing its detection in the Golgi. In contrast, ceramide accumulation had no effect on either the trafficking or the metabolism of 6-([N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)amino]hexanoyl)-sphingosine, which rapidly labels the Golgi even at 4 degrees C. Protein trafficking from the ER to the Golgi, determined with vesicular stomatitis virus ts045 G protein fused to green fluorescent protein, was also inhibited in SPP-1-overexpressing cells in the presence of S1P but not in the presence of dihydro-S1P. Our results suggest that SPP-1 regulates ceramide levels in the ER and thus influences the anterograde membrane transport of both ceramide and proteins from the ER to the Golgi apparatus.  相似文献   
4.
Accumulating evidence suggests that glucolipotoxicity, arising from the combined actions of elevated glucose and free fatty acid levels, acts as a key pathogenic component in type II diabetes, contributing to β-cell dysfunction and death. Endoplasmic reticulum (ER) stress is among the molecular pathways and regulators involved in these negative effects, and ceramide accumulation due to glucolipotoxicity can be associated with the induction of ER stress. Increased levels of ceramide in ER may be due to enhanced ceramide biosynthesis and/or decreased ceramide utilization. Here, we studied the effect of glucolipotoxic conditions on ceramide traffic in INS-1 cells in order to gain insights into the molecular mechanism(s) of glucolipotoxicity. We showed that glucolipotoxicity inhibited ceramide utilization for complex sphingolipid biosynthesis, thereby reducing the flow of ceramide from the ER to Golgi. Glucolipotoxicity impaired both vesicular- and CERT-mediated ceramide transport through (1) the decreasing of phospho-Akt levels which in turn possibly inhibits vesicular traffic, and (2) the reducing of the amount of active CERT mainly due to a lower protein levels and increased protein phosphorylation to prevent its localization to the Golgi. In conclusion, our findings provide evidence that glucolipotoxicity-induced ceramide overload in the ER, arising from a defect in ceramide trafficking may be a mechanism that contributes to dysfunction and/or death of β-cells exposed to glucolipotoxicity.  相似文献   
5.
Are blue-green algae a suitable food for zooplankton? An overview   总被引:2,自引:15,他引:2  
de Bernardi  R.  Giussani  G. 《Hydrobiologia》1990,200(1):29-41

One of the reasons suggested to explain the dominance of blue-greens in eutrophic lakes is that they are not used as food by zooplankton; and even when ingested, they are poorly utilized.

An increase in herbivores might be the expected result of biomanipulation of the aquatic food chain. This attempt at controlling the algae population is, however, destined to fail if zooplankton do not also utilize blue-greens as food. In this respect, a series of in-lake experimental results indicates that after the food chain has been biomanipulated, there is a decrease in blue-green density in periods when there is an increase in herbivores. Is this only an accidental result or are the two facts interrelated; in other words, can the decrease in the density of blue-greens be attributed to the increased use of them by zooplankton herbivores?

The suitability of blue-greens as food for zooplankton has been widely investigated by many authors with contrasting and inconclusive results. Two main factors seem to play important role in determining their suitability as food: the biochemical properties of the different species, or even different strains of the same species; and the shape and size of the colonies.

In particular, biochemical properties can result in toxic effects on zooplankton, while size and shape may strongly interfere with filtering, thus reducing the possibility of gathering food.

  相似文献   
6.
The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 (210Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of 210Po was monitored. The values measured in the GSF Radioanalytical Laboratory are in the range of natural background concentration. To assess the effective dose received by those persons, the time-dependence of the organ equivalent dose and the effective dose after acute ingestion and inhalation of 210Po were calculated using the biokinetic model for polonium (Po) recommended by the International Commission on Radiological Protection (ICRP) and the one recently published by Leggett and Eckerman (L&E). The daily urinary excretion to effective dose conversion factors for ingestion and inhalation were evaluated based on the ICRP and L&E models for members of the public. The ingestion (inhalation) effective dose per unit intake integrated over one day is 1.7 × 10−8 (1.4 × 10−7) Sv Bq−1, 2.0 × 10−7 (9.6 × 10−7) Sv Bq−1 over 10 days, 5.2 × 10−7 (2.0 × 10−6) Sv Bq−1 over 30 days and 1.0 × 10−6 (3.0 × 10−6) Sv Bq−1 over 100 days. The daily urinary excretions after acute ingestion (inhalation) of 1 Bq of 210Po are 1.1 × 10−3 (1.0 × 10−4) on day 1, 2.0 × 10−3 (1.9 × 10−4) on day 10, 1.3 × 10−3 (1.7 × 10−4) on day 30 and 3.6 × 10−4 (8.3 × 10−5) Bq d−1 on day 100, respectively. The resulting committed effective doses range from 2.1 × 10−3 to 1.7 × 10−2 mSv by an assumption of ingestion and from 5.5 × 10−2 to 4.5 × 10−1 mSv by inhalation. For the case of Mr. Litvinenko, the mean organ absorbed dose as a function of time was calculated using both the above stated models. The red bone marrow, the kidneys and the liver were considered as the critical organs. Assuming a value of lethal absorbed dose of 5 Gy to the bone marrow, 6 Gy to the kidneys and 8 Gy to the liver, the amount of 210Po which Mr. Litvinenko might have ingested is therefore estimated to range from 27 to 1,408 MBq, i.e 0.2–8.5 μg, depending on the modality of intake and on different assumptions about blood absorption.  相似文献   
7.
The recent interest in the thermoluminescence of quartz extracted from unfired building materials, such as mortar and concrete for dose reconstruction applications, led to the requirement of an accurate determination of the lifetime of the intermediate glow peaks in this mineral. The prediction of the lifetimes of these peaks is helpful in establishing the likely time range within which retrospective measurements can be carried out. These peaks, corresponding to intermediate energy levels, occur in the glow curve in the temperature range 150–250°C (heating rate 2°C/s). Lifetimes of 720±70 days and 580±70 years (at a temperature of 15°C) were derived for the two main peaks placed in the glow curve at approximately 150°C and 200°C, respectively, using the isothermal decay technique. These results as well as the estimated values of the trap parameters (thermal activation energy and frequency factor) have been compared with the data already available in the literature.  相似文献   
8.
In response to an acute hypoxemic insult, the mammalian fetus shows a redistribution of the cardiac output in favor of the heart and brain. Peripheral vasoconstriction contributes to this response and is partly mediated by the release of catecholamines. Two mechanisms of catecholamine release in the fetus are reported: 1) neurogenic sympathetic stimulation and 2) a nonneurogenic mechanism via a direct effect of hypoxemia on chromaffin tissues. In the present study, the effects of sympathetic blockade on plasma catecholamine release and cardiac output distribution in response to acute hypoxemia were studied in the chick embryo at different stages of incubation. Only at the end of the incubation period, sympathetic blockade markedly attenuated the increase in plasma catecholamine concentrations and resulted in a greater fraction of the cardiac output distributed to the carcass. However, these effects did not prevent a significant increase in cardiac output to the brain and heart during acute hypoxemia. These data imply that in the chick embryo the contribution of neurogenic mechanisms to the catecholaminergic response to acute hypoxemia becomes greater by the end of the incubation period.  相似文献   
9.
Perinatal exposure to chronic hypoxia induces sustained pulmonary hypertension and structural and functional changes in both pulmonary and systemic vascular beds. The aim of this study was to analyze consequences of high-altitude chronic hypoxia during gestation and early after birth in pulmonary and femoral vascular responses in newborn sheep. Lowland (LLNB; 580 m) and highland (HLNB; 3,600 m) newborn lambs were cathetherized under general anesthesia and submitted to acute sustained or stepwise hypoxic episodes. Contractile and dilator responses of isolated pulmonary and femoral small arteries were analyzed in a wire myograph. Under basal conditions, HLNB had a higher pulmonary arterial pressure (PAP; 20.2 +/- 2.4 vs. 13.6 +/- 0.5 mmHg, P < 0.05) and cardiac output (342 +/- 23 vs. 279 +/- 13 ml x min(-1) x kg(-1), P < 0.05) compared with LLNB. In small pulmonary arteries, HLNB showed greater contractile capacity and higher sensitivity to nitric oxide. In small femoral arteries, HLNB had lower maximal contraction than LLNB with higher maximal response and sensitivity to noradrenaline and phenylephrine. In acute superimposed hypoxia, HLNB reached higher PAP and femoral vascular resistance than LLNB. Graded hypoxia showed that average PAP was always higher in HLNB compared with LLNB at any Po2. Newborn lambs from pregnancies at high altitude have stronger pulmonary vascular responses to acute hypoxia associated with higher arterial contractile status. In addition, systemic vascular response to acute hypoxia is increased in high-altitude newborns, associated with higher arterial adrenergic responses. These responses determined in intrauterine life and early after birth could be adaptive to chronic hypoxia in the Andean altiplano.  相似文献   
10.
Umbilical cord compression (UCC) sufficient to reduce umbilical blood flow by 30% for 3 days, results in increased fetal plasma cortisol and catecholamines that are likely to promote maturation of the fetal lung and brown adipose tissue (BAT). We determined the effect of UCC on the abundance of uncoupling protein (UCP)1 (BAT only) and -2, glucocorticoid receptor (GR), and 11beta-hydroxysteroid dehydrogenase (11beta-HSD)1 and -2 mRNA, and mitochondrial protein voltage-dependent anion channel (VDAC) and cytochrome c in these tissues. At 118 +/- 2 days of gestation (dGA; term approximately 145 days), 14 fetuses were chronically instrumented. Eight fetuses were then subjected to 3 days of UCC from 125 dGA, and the remaining fetuses were sham operated. All fetuses were then exposed to two 1-h episodes of hypoxemia at 130 +/- 1 and 134 +/- 1 dGA before tissue sampling at 137 +/- 2 dGA. In both tissues, UCC upregulated UCP2 and GR mRNA, plus VDAC and cytochrome c mitochondrial proteins. In lung, UCC increased 11beta-HSD1 mRNA but decreased 11beta-HSD2 mRNA abundance, a pattern reversed for BAT. UCC increased UCP1 mRNA and its translated protein in BAT. UCP2, GR, 11beta-HSD1 and -2 mRNA, plus VDAC and cytochrome c protein abundance were all significantly correlated with fetal plasma cortisol and catecholamine levels, but not thyroid hormone concentrations, in the lung and BAT of UCC fetuses. In conclusion, chronic UCC results in precocious maturation of the fetal lung and BAT mitochondria, an adaptation largely mediated by the surge in fetal plasma cortisol and catecholamines that accompanies UCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号